Iz‐iddine EL‐Fassi, Juan J. Nieto, Masakazu Onitsuka
{"title":"理查兹型分数微分方程解法的新表示法","authors":"Iz‐iddine EL‐Fassi, Juan J. Nieto, Masakazu Onitsuka","doi":"10.1002/mma.10394","DOIUrl":null,"url":null,"abstract":"Richards in [35] proposed a modification of the logistic model to model growth of biological populations. In this paper, we give a new representation (or characterization) of the solution to the Richards‐type fractional differential equation for , where is a continuously differentiable function on and is a positive real constant. The obtained representation of the solution can be used effectively for computational and analytic purposes. This study improves and generalizes the results obtained on fractional logistic ordinary differential equation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new representation for the solution of the Richards‐type fractional differential equation\",\"authors\":\"Iz‐iddine EL‐Fassi, Juan J. Nieto, Masakazu Onitsuka\",\"doi\":\"10.1002/mma.10394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Richards in [35] proposed a modification of the logistic model to model growth of biological populations. In this paper, we give a new representation (or characterization) of the solution to the Richards‐type fractional differential equation for , where is a continuously differentiable function on and is a positive real constant. The obtained representation of the solution can be used effectively for computational and analytic purposes. This study improves and generalizes the results obtained on fractional logistic ordinary differential equation.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A new representation for the solution of the Richards‐type fractional differential equation
Richards in [35] proposed a modification of the logistic model to model growth of biological populations. In this paper, we give a new representation (or characterization) of the solution to the Richards‐type fractional differential equation for , where is a continuously differentiable function on and is a positive real constant. The obtained representation of the solution can be used effectively for computational and analytic purposes. This study improves and generalizes the results obtained on fractional logistic ordinary differential equation.