外域中时间分量扩散方程系统的不存在性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mohamed Jleli, Bessem Samet
{"title":"外域中时间分量扩散方程系统的不存在性","authors":"Mohamed Jleli, Bessem Samet","doi":"10.1002/mma.10489","DOIUrl":null,"url":null,"abstract":"A system of time‐fractional diffusion equations posed in an exterior domain of ( ) under homogeneous Dirichlet boundary conditions is investigated in this paper. The time‐fractional derivatives are considered in the Caputo sense. Using nonlinear capacity estimates specifically adapted to the nonlocal properties of the Caputo fractional derivative, the geometry of the domain, and the boundary conditions, we obtain sufficient conditions for the nonexistence of a weak solution to the considered system.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonexistence for a system of time‐fractional diffusion equations in an exterior domain\",\"authors\":\"Mohamed Jleli, Bessem Samet\",\"doi\":\"10.1002/mma.10489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system of time‐fractional diffusion equations posed in an exterior domain of ( ) under homogeneous Dirichlet boundary conditions is investigated in this paper. The time‐fractional derivatives are considered in the Caputo sense. Using nonlinear capacity estimates specifically adapted to the nonlocal properties of the Caputo fractional derivative, the geometry of the domain, and the boundary conditions, we obtain sufficient conditions for the nonexistence of a weak solution to the considered system.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在同质 Dirichlet 边界条件下,( )外部域中的时间分量扩散方程组。时间分数导数是在卡普托意义上考虑的。利用专门针对卡普托分数导数的非局部特性、域的几何形状和边界条件而调整的非线性容量估计,我们得到了所考虑的系统不存在弱解的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonexistence for a system of time‐fractional diffusion equations in an exterior domain
A system of time‐fractional diffusion equations posed in an exterior domain of ( ) under homogeneous Dirichlet boundary conditions is investigated in this paper. The time‐fractional derivatives are considered in the Caputo sense. Using nonlinear capacity estimates specifically adapted to the nonlocal properties of the Caputo fractional derivative, the geometry of the domain, and the boundary conditions, we obtain sufficient conditions for the nonexistence of a weak solution to the considered system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信