{"title":"脉冲微分方程的参数变化和初始时差 Lipschitz 稳定性","authors":"Saliha Demirbüken, Coşkun Yakar","doi":"10.1002/mma.10498","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Lipschitz stability of a perturbed impulsive differential system concerning the unperturbed system. We employ the variation of parameters or the constant of variation for impulsive differential systems with an initial time difference.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation of parameters and initial time difference Lipschitz stability of impulsive differential equations\",\"authors\":\"Saliha Demirbüken, Coşkun Yakar\",\"doi\":\"10.1002/mma.10498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the Lipschitz stability of a perturbed impulsive differential system concerning the unperturbed system. We employ the variation of parameters or the constant of variation for impulsive differential systems with an initial time difference.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Variation of parameters and initial time difference Lipschitz stability of impulsive differential equations
In this paper, we investigate the Lipschitz stability of a perturbed impulsive differential system concerning the unperturbed system. We employ the variation of parameters or the constant of variation for impulsive differential systems with an initial time difference.