{"title":"二级 IFS 热力学形式主义:概率空间中的吉布斯概率和前推图谱","authors":"A. O. Lopes, E. R. Oliveira","doi":"10.1080/14689367.2024.2394672","DOIUrl":null,"url":null,"abstract":"We will denote by M the space of Borel probabilities on the symbolic space Ω={1,2⋯,m}N. M is equipped Monge–Kantorovich metric. We consider here the push-forward map T:M→M as a dynamical system. Th...","PeriodicalId":501586,"journal":{"name":"Dynamical Systems","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Level-2 IFS thermodynamic formalism: Gibbs probabilities in the space of probabilities and the push-forward map\",\"authors\":\"A. O. Lopes, E. R. Oliveira\",\"doi\":\"10.1080/14689367.2024.2394672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We will denote by M the space of Borel probabilities on the symbolic space Ω={1,2⋯,m}N. M is equipped Monge–Kantorovich metric. We consider here the push-forward map T:M→M as a dynamical system. Th...\",\"PeriodicalId\":501586,\"journal\":{\"name\":\"Dynamical Systems\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2024.2394672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14689367.2024.2394672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们用 M 表示符号空间 Ω={1,2⋯,m}N 上的博尔概率空间。M 具备 Monge-Kantorovich 度量。在此,我们将前推映射 T:M→M 视为一个动力系统。这...
Level-2 IFS thermodynamic formalism: Gibbs probabilities in the space of probabilities and the push-forward map
We will denote by M the space of Borel probabilities on the symbolic space Ω={1,2⋯,m}N. M is equipped Monge–Kantorovich metric. We consider here the push-forward map T:M→M as a dynamical system. Th...