{"title":"血清细胞外纳米载体 miR-412-3p 靶向调控 TEAD1 促进厘米以下肺结节恶性生物学行为的机制研究","authors":"Yuxia Deng,Nishant Patel,Shuang Ding,Haijun Zhang","doi":"10.3233/cbm-240137","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\r\nTo investigate the impact and potential mechanisms of serum extracellular nano-vesicles (sEVs) miR-412-3p released from sub-centimeter lung nodules with a diameter of ⩽ 10 mm on the malignant biological function of micro-nodular lung cancer (mnLC).\r\n\r\nMETHODS\r\nA total of 87 participants were included and divided into a mnLC group (n= 30), a benign lung nodule (BLN) group (n= 27), and a healthy people control group (n= 30). Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot (WB) were used to measure the morphological characteristics and surface markers of sEVs. In vitro analysis, real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 cell proliferation assay, clone formation assay, Transwell, stem cell sphere-forming assay, and WB assay were conducted to verify the effect of miR-412-3p/TEAD1 signaling axis on the biological function of lung cancer cells through, respectively. Further validation was conducted using the serum sEVs of the participants.\r\n\r\nRESULTS\r\nThe expression level of sEVs-miR-412-3p in the mnLC group was significantly higher than that in the BLN and healthy groups (P< 0.01). In lung cancer cell lines, miR-412-3p can negatively regulate the targeted gene TEAD1. The miR-412-3p/TEAD1 signaling axis is involved in promoting the EMT signaling pathway and regulating the malignant biological functions of lung cancer cell proliferation, migration, and stemness (P< 0.05). In addition, sEVs in the mnLC group significantly promoted lung cancer cell proliferation, migration, and stemness compared to the BLN and healthy groups, inhibited the expression of E-cadherin and TEAD1 in lung cancer cells, and promoted the expression of N-cadherin and Vimentin (P< 0.05).\r\n\r\nCONCLUSION\r\nsEVs-miR-412-3p could promote the biological process of EMT, and lead to the occurrence of malignant biological behavior in sub-centimeter lung nodules. This provides evidence for the miR-412-3p/TEAD1 signaling axis as a potential therapeutic target for mnLC.","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":"206 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism study of serum extracellular nano-vesicles miR-412-3p targeting regulation of TEAD1 in promoting malignant biological behavior of sub-centimeter lung nodules.\",\"authors\":\"Yuxia Deng,Nishant Patel,Shuang Ding,Haijun Zhang\",\"doi\":\"10.3233/cbm-240137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE\\r\\nTo investigate the impact and potential mechanisms of serum extracellular nano-vesicles (sEVs) miR-412-3p released from sub-centimeter lung nodules with a diameter of ⩽ 10 mm on the malignant biological function of micro-nodular lung cancer (mnLC).\\r\\n\\r\\nMETHODS\\r\\nA total of 87 participants were included and divided into a mnLC group (n= 30), a benign lung nodule (BLN) group (n= 27), and a healthy people control group (n= 30). Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot (WB) were used to measure the morphological characteristics and surface markers of sEVs. In vitro analysis, real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 cell proliferation assay, clone formation assay, Transwell, stem cell sphere-forming assay, and WB assay were conducted to verify the effect of miR-412-3p/TEAD1 signaling axis on the biological function of lung cancer cells through, respectively. Further validation was conducted using the serum sEVs of the participants.\\r\\n\\r\\nRESULTS\\r\\nThe expression level of sEVs-miR-412-3p in the mnLC group was significantly higher than that in the BLN and healthy groups (P< 0.01). In lung cancer cell lines, miR-412-3p can negatively regulate the targeted gene TEAD1. The miR-412-3p/TEAD1 signaling axis is involved in promoting the EMT signaling pathway and regulating the malignant biological functions of lung cancer cell proliferation, migration, and stemness (P< 0.05). In addition, sEVs in the mnLC group significantly promoted lung cancer cell proliferation, migration, and stemness compared to the BLN and healthy groups, inhibited the expression of E-cadherin and TEAD1 in lung cancer cells, and promoted the expression of N-cadherin and Vimentin (P< 0.05).\\r\\n\\r\\nCONCLUSION\\r\\nsEVs-miR-412-3p could promote the biological process of EMT, and lead to the occurrence of malignant biological behavior in sub-centimeter lung nodules. This provides evidence for the miR-412-3p/TEAD1 signaling axis as a potential therapeutic target for mnLC.\",\"PeriodicalId\":56320,\"journal\":{\"name\":\"Cancer Biomarkers\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biomarkers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/cbm-240137\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/cbm-240137","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Mechanism study of serum extracellular nano-vesicles miR-412-3p targeting regulation of TEAD1 in promoting malignant biological behavior of sub-centimeter lung nodules.
OBJECTIVE
To investigate the impact and potential mechanisms of serum extracellular nano-vesicles (sEVs) miR-412-3p released from sub-centimeter lung nodules with a diameter of ⩽ 10 mm on the malignant biological function of micro-nodular lung cancer (mnLC).
METHODS
A total of 87 participants were included and divided into a mnLC group (n= 30), a benign lung nodule (BLN) group (n= 27), and a healthy people control group (n= 30). Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot (WB) were used to measure the morphological characteristics and surface markers of sEVs. In vitro analysis, real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 cell proliferation assay, clone formation assay, Transwell, stem cell sphere-forming assay, and WB assay were conducted to verify the effect of miR-412-3p/TEAD1 signaling axis on the biological function of lung cancer cells through, respectively. Further validation was conducted using the serum sEVs of the participants.
RESULTS
The expression level of sEVs-miR-412-3p in the mnLC group was significantly higher than that in the BLN and healthy groups (P< 0.01). In lung cancer cell lines, miR-412-3p can negatively regulate the targeted gene TEAD1. The miR-412-3p/TEAD1 signaling axis is involved in promoting the EMT signaling pathway and regulating the malignant biological functions of lung cancer cell proliferation, migration, and stemness (P< 0.05). In addition, sEVs in the mnLC group significantly promoted lung cancer cell proliferation, migration, and stemness compared to the BLN and healthy groups, inhibited the expression of E-cadherin and TEAD1 in lung cancer cells, and promoted the expression of N-cadherin and Vimentin (P< 0.05).
CONCLUSION
sEVs-miR-412-3p could promote the biological process of EMT, and lead to the occurrence of malignant biological behavior in sub-centimeter lung nodules. This provides evidence for the miR-412-3p/TEAD1 signaling axis as a potential therapeutic target for mnLC.
期刊介绍:
Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion.
The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.