表层下氧气对铜表面二氧化碳充电能量变化的影响

Xiaohe Lei, Vojtech Vlcek
{"title":"表层下氧气对铜表面二氧化碳充电能量变化的影响","authors":"Xiaohe Lei, Vojtech Vlcek","doi":"arxiv-2409.08433","DOIUrl":null,"url":null,"abstract":"Subsurface oxygen in oxide-derived copper catalysts significantly influences\nCO$_2$ activation. However, its effect on the molecular charging process, the\nkey to forming the CO$_2^{\\delta-}$ intermediate, remains poorly understood. We\nemploy many-body perturbation theory to investigate the impact of the\nstructural factors induced by the subsurface oxygen on charged activation of\nCO$_2$. By computing the molecular single-particle state energy of the\nelectron-accepting orbital ($\\sigma*$) on Cu (111) surface, we examined how\nthis molecular quasi-particle (QP) energy changes with varied vicinity of\nadsorption and multiple subsurface oxygen configuration. We demonstrate that\nsubsurface oxygen impairs CO$_2$ charging, with its presence and density being\ninfluential factors. The non-local potential proves substantial for accurate\nexcitation energy predictions yet is not sensitive to minor atomic structural\nchanges. More importantly, state delocalization and hybridization are critical\nfor determining QP energy. These insights are enlightening for designing atomic\narchitectures to optimize catalytic performance on modified surfaces.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Subsurface Oxygen on CO2 Charging Energy Changes in Cu Surfaces\",\"authors\":\"Xiaohe Lei, Vojtech Vlcek\",\"doi\":\"arxiv-2409.08433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subsurface oxygen in oxide-derived copper catalysts significantly influences\\nCO$_2$ activation. However, its effect on the molecular charging process, the\\nkey to forming the CO$_2^{\\\\delta-}$ intermediate, remains poorly understood. We\\nemploy many-body perturbation theory to investigate the impact of the\\nstructural factors induced by the subsurface oxygen on charged activation of\\nCO$_2$. By computing the molecular single-particle state energy of the\\nelectron-accepting orbital ($\\\\sigma*$) on Cu (111) surface, we examined how\\nthis molecular quasi-particle (QP) energy changes with varied vicinity of\\nadsorption and multiple subsurface oxygen configuration. We demonstrate that\\nsubsurface oxygen impairs CO$_2$ charging, with its presence and density being\\ninfluential factors. The non-local potential proves substantial for accurate\\nexcitation energy predictions yet is not sensitive to minor atomic structural\\nchanges. More importantly, state delocalization and hybridization are critical\\nfor determining QP energy. These insights are enlightening for designing atomic\\narchitectures to optimize catalytic performance on modified surfaces.\",\"PeriodicalId\":501304,\"journal\":{\"name\":\"arXiv - PHYS - Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化物衍生铜催化剂中的次表层氧对 CO$_2$ 的活化有很大影响。然而,它对形成 CO$_2^\{delta-}$ 中间产物的关键--分子充电过程的影响仍然知之甚少。我们采用多体扰动理论来研究次表层氧诱导的结构因素对 CO$_2$ 带电活化的影响。通过计算铜(111)表面电子接受轨道的分子单粒子态能($\sigma*$),我们研究了分子准粒子(QP)能是如何随着吸附附近的变化和多个次表面氧构型的变化而变化的。我们证明,次表面氧会影响 CO$_2$ 的充电,其存在和密度是影响因素。事实证明,非局部电势对准确预测激发能量非常重要,但对微小的原子结构变化并不敏感。更重要的是,态外定位和杂化对确定 QP 能量至关重要。这些见解对设计原子结构以优化改性表面的催化性能很有启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Subsurface Oxygen on CO2 Charging Energy Changes in Cu Surfaces
Subsurface oxygen in oxide-derived copper catalysts significantly influences CO$_2$ activation. However, its effect on the molecular charging process, the key to forming the CO$_2^{\delta-}$ intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on charged activation of CO$_2$. By computing the molecular single-particle state energy of the electron-accepting orbital ($\sigma*$) on Cu (111) surface, we examined how this molecular quasi-particle (QP) energy changes with varied vicinity of adsorption and multiple subsurface oxygen configuration. We demonstrate that subsurface oxygen impairs CO$_2$ charging, with its presence and density being influential factors. The non-local potential proves substantial for accurate excitation energy predictions yet is not sensitive to minor atomic structural changes. More importantly, state delocalization and hybridization are critical for determining QP energy. These insights are enlightening for designing atomic architectures to optimize catalytic performance on modified surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信