Ghada O Mohamed, Maher E Saleh and Ahmed S Elsafty
{"title":"使用葵花籽壳生物炭作为过滤器降低一氧化氮气体浓度","authors":"Ghada O Mohamed, Maher E Saleh and Ahmed S Elsafty","doi":"10.1088/1742-6596/2830/1/012006","DOIUrl":null,"url":null,"abstract":"There is a great global interest in controlling air pollutants, specifically greenhouse gases including nitrogen oxides (NOx), nitric oxide is one of its basic components. For this reason, this study dealt with the use of biochar manufactured from agricultural waste from sunflower seed husk (SSHB) with 450°C pyrolysis in the adsorption of 90 ppm concentration of nitric oxide (NO) gas within 480 seconds (8 minutes) by flow rate 1.2 (liter/minute). Two kinds of particle sizes coarse (C) and fine (F) of SSHB were used, and some physiochemical properties of the biochar were studied, including SEM and FTIR, in addition to the BET surface area, which was 3.9 (m2/g). The adsorption results displayed that SSHB (F) is better at the adsorption of NO 31.6 (mg/g) than SSHB (C) 26.7 (mg/g). Isotherm models were applied to the mathematical modelling of NO absorption, and based on n and R2 values the results of the SSHB adsorption for NO fixed with both the Freundlich model and the kinetic pseudo second order model.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreasing the nitric oxide gas concentration by using sunflower seed husk biochar as filter\",\"authors\":\"Ghada O Mohamed, Maher E Saleh and Ahmed S Elsafty\",\"doi\":\"10.1088/1742-6596/2830/1/012006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a great global interest in controlling air pollutants, specifically greenhouse gases including nitrogen oxides (NOx), nitric oxide is one of its basic components. For this reason, this study dealt with the use of biochar manufactured from agricultural waste from sunflower seed husk (SSHB) with 450°C pyrolysis in the adsorption of 90 ppm concentration of nitric oxide (NO) gas within 480 seconds (8 minutes) by flow rate 1.2 (liter/minute). Two kinds of particle sizes coarse (C) and fine (F) of SSHB were used, and some physiochemical properties of the biochar were studied, including SEM and FTIR, in addition to the BET surface area, which was 3.9 (m2/g). The adsorption results displayed that SSHB (F) is better at the adsorption of NO 31.6 (mg/g) than SSHB (C) 26.7 (mg/g). Isotherm models were applied to the mathematical modelling of NO absorption, and based on n and R2 values the results of the SSHB adsorption for NO fixed with both the Freundlich model and the kinetic pseudo second order model.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2830/1/012006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2830/1/012006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
控制空气污染物,特别是包括氮氧化物(NOx)在内的温室气体(一氧化氮是其基本成分之一)引起了全球极大的关注。因此,本研究利用农业废弃物葵花籽壳(SSHB)经 450°C 高温分解制成的生物炭,以 1.2 升/分钟的流速在 480 秒(8 分钟)内吸附 90 ppm 浓度的一氧化氮(NO)气体。采用粗(C)和细(F)两种粒径的 SSHB,研究了生物炭的一些理化性质,包括扫描电镜和傅立叶变换红外光谱,以及 BET 表面积(3.9(m2/g))。吸附结果表明,SSHB(F)吸附 NO 31.6(mg/g)的能力优于 SSHB(C)的 26.7(mg/g)。根据 n 和 R2 值,SSHB 对 NO 的吸附结果与 Freundlich 模型和动力学伪二阶模型相吻合。
Decreasing the nitric oxide gas concentration by using sunflower seed husk biochar as filter
There is a great global interest in controlling air pollutants, specifically greenhouse gases including nitrogen oxides (NOx), nitric oxide is one of its basic components. For this reason, this study dealt with the use of biochar manufactured from agricultural waste from sunflower seed husk (SSHB) with 450°C pyrolysis in the adsorption of 90 ppm concentration of nitric oxide (NO) gas within 480 seconds (8 minutes) by flow rate 1.2 (liter/minute). Two kinds of particle sizes coarse (C) and fine (F) of SSHB were used, and some physiochemical properties of the biochar were studied, including SEM and FTIR, in addition to the BET surface area, which was 3.9 (m2/g). The adsorption results displayed that SSHB (F) is better at the adsorption of NO 31.6 (mg/g) than SSHB (C) 26.7 (mg/g). Isotherm models were applied to the mathematical modelling of NO absorption, and based on n and R2 values the results of the SSHB adsorption for NO fixed with both the Freundlich model and the kinetic pseudo second order model.