{"title":"北斗卫星导航系统漏洞转发欺骗检测算法","authors":"Jiangtao Xu, Yajuan Guo, Daohua Zhu, Yunxiao Sun, Wei Huang, Xindong Zhao","doi":"10.1007/s40328-024-00453-y","DOIUrl":null,"url":null,"abstract":"<p>With the Beidou navigation system's fast expansion in China, it is popular in military and civilian aspects. However, since the satellite orbit operates at an extremely high position and there is energy loss during the propagation process, the receiver only picks up a very faint signal, which makes the Beidou receiver very vulnerable to interference. The interference of the receiver is divided into natural interference and human interference, of which the human interference is particularly serious. Deception is commonly used in human interference. The deception interference detection technology in Beidou navigation system is studied in this research. Firstly, the signal in the signal capture stage is detected by multi-peak detection algorithm to determine the signal type. If it cannot be determined, the signal is detected by the half-peak full-width algorithm, so as to determine the signal type. In the stage of signal tracking, the Doppler shift of the spoofing signal is applied to determine whether the signal is spoofed or not. When the spoofing signal forwarding delay is set to 0.5 and 1 chip respectively, the full width of half peak is 8.56 and 11.35 after fitting the main peak. If the half-peak full width exceeds the normal navigation signal, it indicates spoofing interference. The constructed model can effectively track downspoofing signals and improve the Beidou navigation system’s detection performance.</p>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A forwarding spoofing detection algorithm for Beidou navigation satellite system vulnerability\",\"authors\":\"Jiangtao Xu, Yajuan Guo, Daohua Zhu, Yunxiao Sun, Wei Huang, Xindong Zhao\",\"doi\":\"10.1007/s40328-024-00453-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the Beidou navigation system's fast expansion in China, it is popular in military and civilian aspects. However, since the satellite orbit operates at an extremely high position and there is energy loss during the propagation process, the receiver only picks up a very faint signal, which makes the Beidou receiver very vulnerable to interference. The interference of the receiver is divided into natural interference and human interference, of which the human interference is particularly serious. Deception is commonly used in human interference. The deception interference detection technology in Beidou navigation system is studied in this research. Firstly, the signal in the signal capture stage is detected by multi-peak detection algorithm to determine the signal type. If it cannot be determined, the signal is detected by the half-peak full-width algorithm, so as to determine the signal type. In the stage of signal tracking, the Doppler shift of the spoofing signal is applied to determine whether the signal is spoofed or not. When the spoofing signal forwarding delay is set to 0.5 and 1 chip respectively, the full width of half peak is 8.56 and 11.35 after fitting the main peak. If the half-peak full width exceeds the normal navigation signal, it indicates spoofing interference. The constructed model can effectively track downspoofing signals and improve the Beidou navigation system’s detection performance.</p>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s40328-024-00453-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s40328-024-00453-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A forwarding spoofing detection algorithm for Beidou navigation satellite system vulnerability
With the Beidou navigation system's fast expansion in China, it is popular in military and civilian aspects. However, since the satellite orbit operates at an extremely high position and there is energy loss during the propagation process, the receiver only picks up a very faint signal, which makes the Beidou receiver very vulnerable to interference. The interference of the receiver is divided into natural interference and human interference, of which the human interference is particularly serious. Deception is commonly used in human interference. The deception interference detection technology in Beidou navigation system is studied in this research. Firstly, the signal in the signal capture stage is detected by multi-peak detection algorithm to determine the signal type. If it cannot be determined, the signal is detected by the half-peak full-width algorithm, so as to determine the signal type. In the stage of signal tracking, the Doppler shift of the spoofing signal is applied to determine whether the signal is spoofed or not. When the spoofing signal forwarding delay is set to 0.5 and 1 chip respectively, the full width of half peak is 8.56 and 11.35 after fitting the main peak. If the half-peak full width exceeds the normal navigation signal, it indicates spoofing interference. The constructed model can effectively track downspoofing signals and improve the Beidou navigation system’s detection performance.
期刊介绍:
The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.