通过恒星瞬变制约初始质量函数

Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera, Andrea Lapi
{"title":"通过恒星瞬变制约初始质量函数","authors":"Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera, Andrea Lapi","doi":"arxiv-2409.09118","DOIUrl":null,"url":null,"abstract":"The stellar initial-mass function (IMF) represents a fundamental quantity in\nastrophysics and cosmology, describing the mass distribution of stars from low\nto very-high masses. It is intimately linked to a wide variety of topics,\nincluding stellar and binary evolution, galaxy evolution, chemical enrichment,\nand cosmological reionization. Nonetheless, the IMF still remains highly\nuncertain. In this work, we aim at determining the IMF with a novel approach\nbased on the observed rates of transients of stellar origin. We parametrize the\nIMF with a simple, but flexible, Larson shape, and insert it into a parametric\nmodel for the cosmic UV luminosity density, local stellar mass density, type Ia\nsupernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst\n(LGRB) rates as function of redshift. We constrain our free parameters by\nmatching the model predictions to a set of empirical determinations for the\ncorresponding quantities, via a Bayesian Markov-Chain Monte Carlo method.\nRemarkably, we are able to provide an independent IMF determination, with\ncharacteristic mass $m_c=0.10^{+0.24}_{-0.08}\\:M_{\\odot}$, and high-mass slope\n$\\xi=-2.53^{+0.24}_{-0.27}$, that is in accordance with the widely-used IMF\nparameterizations (e.g. Salpeter, Kroupa, Chabrier). Moreover, the adoption of\nan up-to-date recipe for the cosmic metallicity evolution, allows us to\nconstrain the maximum metallicity of LGRB progenitors to\n$Z_{max}=0.12^{+0.29}_{-0.05}\\:Z_{\\odot}$. We also find what progenitor\nfraction actually leads to SN Ia or LGRB emission, put constraints on the CCSN\nand LGRB progenitor mass ranges, and test the IMF universality. These results\nshow the potential of this kind of approach for studying the IMF, its putative\nevolution with galactic environment and cosmic history, and the properties of\nSN Ia, CCSN and LGRB progenitors, especially considering the wealth of data\nincoming in the future.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining the Initial-Mass Function via Stellar Transients\",\"authors\":\"Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera, Andrea Lapi\",\"doi\":\"arxiv-2409.09118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stellar initial-mass function (IMF) represents a fundamental quantity in\\nastrophysics and cosmology, describing the mass distribution of stars from low\\nto very-high masses. It is intimately linked to a wide variety of topics,\\nincluding stellar and binary evolution, galaxy evolution, chemical enrichment,\\nand cosmological reionization. Nonetheless, the IMF still remains highly\\nuncertain. In this work, we aim at determining the IMF with a novel approach\\nbased on the observed rates of transients of stellar origin. We parametrize the\\nIMF with a simple, but flexible, Larson shape, and insert it into a parametric\\nmodel for the cosmic UV luminosity density, local stellar mass density, type Ia\\nsupernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst\\n(LGRB) rates as function of redshift. We constrain our free parameters by\\nmatching the model predictions to a set of empirical determinations for the\\ncorresponding quantities, via a Bayesian Markov-Chain Monte Carlo method.\\nRemarkably, we are able to provide an independent IMF determination, with\\ncharacteristic mass $m_c=0.10^{+0.24}_{-0.08}\\\\:M_{\\\\odot}$, and high-mass slope\\n$\\\\xi=-2.53^{+0.24}_{-0.27}$, that is in accordance with the widely-used IMF\\nparameterizations (e.g. Salpeter, Kroupa, Chabrier). Moreover, the adoption of\\nan up-to-date recipe for the cosmic metallicity evolution, allows us to\\nconstrain the maximum metallicity of LGRB progenitors to\\n$Z_{max}=0.12^{+0.29}_{-0.05}\\\\:Z_{\\\\odot}$. We also find what progenitor\\nfraction actually leads to SN Ia or LGRB emission, put constraints on the CCSN\\nand LGRB progenitor mass ranges, and test the IMF universality. These results\\nshow the potential of this kind of approach for studying the IMF, its putative\\nevolution with galactic environment and cosmic history, and the properties of\\nSN Ia, CCSN and LGRB progenitors, especially considering the wealth of data\\nincoming in the future.\",\"PeriodicalId\":501068,\"journal\":{\"name\":\"arXiv - PHYS - Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恒星初始质量函数(IMF)是天体物理学和宇宙学中的一个基本量,描述了恒星从低质量到超高质量的质量分布。它与恒星和双星演化、星系演化、化学富集和宇宙再电离等众多课题密切相关。尽管如此,IMF仍然存在很大的不确定性。在这项工作中,我们旨在根据观测到的恒星源瞬态速率,用一种新方法来确定IMF。我们用一个简单但灵活的拉森形状来对IMF进行参数化,并将其插入到一个参数模型中,该模型是宇宙紫外发光密度、本地恒星质量密度、I型超新星(SN Ia)、核坍缩超新星(CCSN)和长伽马射线暴(LGRB)的速率与红移的函数关系。我们通过贝叶斯马尔可夫链蒙特卡洛方法,将模型预测与一组相应数量的经验测定相匹配,从而约束我们的自由参数。值得注意的是,我们能够提供一个独立的IMF确定值,其特征质量为$m_c=0.10^{+0.24}_{-0.08}\:M_{\odot}$,高质斜率为$xi=-2.53^{+0.24}_{-0.27}$,这与广泛使用的IMF参数化(如Salpeter、Kroupa、Chabrier)是一致的。此外,由于采用了最新的宇宙金属性演化公式,我们可以把LGRB原生星的最大金属性约束为$Z_{max}=0.12^{+0.29}_{-0.05}\:Z_{\odot}$。我们还找到了导致SN Ia或LGRB发射的原生星比例,对CCSN和LGRB原生星的质量范围施加了约束,并检验了IMF的普遍性。这些结果表明了这种方法在研究IMF、IMF与星系环境和宇宙历史的推定演化,以及SN Ia、CCSN和LGRB原生体的性质方面的潜力,特别是考虑到未来即将到来的大量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraining the Initial-Mass Function via Stellar Transients
The stellar initial-mass function (IMF) represents a fundamental quantity in astrophysics and cosmology, describing the mass distribution of stars from low to very-high masses. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim at determining the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple, but flexible, Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities, via a Bayesian Markov-Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination, with characteristic mass $m_c=0.10^{+0.24}_{-0.08}\:M_{\odot}$, and high-mass slope $\xi=-2.53^{+0.24}_{-0.27}$, that is in accordance with the widely-used IMF parameterizations (e.g. Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution, allows us to constrain the maximum metallicity of LGRB progenitors to $Z_{max}=0.12^{+0.29}_{-0.05}\:Z_{\odot}$. We also find what progenitor fraction actually leads to SN Ia or LGRB emission, put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with galactic environment and cosmic history, and the properties of SN Ia, CCSN and LGRB progenitors, especially considering the wealth of data incoming in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信