局部有限类型的 $$\imath $$ 规范基础的稳定性

IF 0.4 3区 数学 Q4 MATHEMATICS
Hideya Watanabe
{"title":"局部有限类型的 $$\\imath $$ 规范基础的稳定性","authors":"Hideya Watanabe","doi":"10.1007/s00031-024-09876-x","DOIUrl":null,"url":null,"abstract":"<p>We prove the stability conjecture of <span>\\(\\imath \\)</span>canonical bases, which was raised by Huanchen Bao and Weiqiang Wang in 2016, for all locally finite types. To this end, we characterize the trivial module over the <span>\\(\\imath \\)</span>quantum groups of such type at <span>\\(q = \\infty \\)</span>. This result can be seen as a very restrictive version of the <span>\\(\\imath \\)</span>crystal base theory for locally finite types.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of $$\\\\imath $$ canonical Bases of Locally Finite Type\",\"authors\":\"Hideya Watanabe\",\"doi\":\"10.1007/s00031-024-09876-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the stability conjecture of <span>\\\\(\\\\imath \\\\)</span>canonical bases, which was raised by Huanchen Bao and Weiqiang Wang in 2016, for all locally finite types. To this end, we characterize the trivial module over the <span>\\\\(\\\\imath \\\\)</span>quantum groups of such type at <span>\\\\(q = \\\\infty \\\\)</span>. This result can be seen as a very restrictive version of the <span>\\\\(\\\\imath \\\\)</span>crystal base theory for locally finite types.</p>\",\"PeriodicalId\":49423,\"journal\":{\"name\":\"Transformation Groups\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transformation Groups\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09876-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09876-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了包焕臣和王伟强在 2016 年提出的针对所有局部有限类型的 \(\imath\)canonical bases 的稳定性猜想。为此,我们表征了在 \(q = \infty \)时这种类型的 \(\imath \)量子群上的琐碎模块。这个结果可以被看作是局部有限类型的晶体基础理论的一个限制性版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of $$\imath $$ canonical Bases of Locally Finite Type

We prove the stability conjecture of \(\imath \)canonical bases, which was raised by Huanchen Bao and Weiqiang Wang in 2016, for all locally finite types. To this end, we characterize the trivial module over the \(\imath \)quantum groups of such type at \(q = \infty \). This result can be seen as a very restrictive version of the \(\imath \)crystal base theory for locally finite types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transformation Groups
Transformation Groups 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
100
审稿时长
9 months
期刊介绍: Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信