Baibhab Bose, Devvrat Tiwari and Subhashish Banerjee
{"title":"开放量子系统中的二方 OTOC:信息扰乱和不可逆性","authors":"Baibhab Bose, Devvrat Tiwari and Subhashish Banerjee","doi":"10.1088/1367-2630/ad77ee","DOIUrl":null,"url":null,"abstract":"The field of information scrambling has seen significant growth over the last decade, where the out-of-time-ordered correlator (OTOC) has emerged as a prominent tool to probe it. In this work, we use bipartite OTOC, a particular form of OTOC, to study information scrambling in the atom–field interaction models and the model of the Ising spin chain interacting with a tilted magnetic field. This is done considering the effects of open quantum systems. A relationship between information scrambling, using bipartite OTOC, and irreversibility, using entropy production, is probed under unitary dynamics. The equivalence of bipartite OTOC with operator entanglement is explicitly shown for the Ising model.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"39 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite OTOC in open quantum systems: information scrambling and irreversibility\",\"authors\":\"Baibhab Bose, Devvrat Tiwari and Subhashish Banerjee\",\"doi\":\"10.1088/1367-2630/ad77ee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of information scrambling has seen significant growth over the last decade, where the out-of-time-ordered correlator (OTOC) has emerged as a prominent tool to probe it. In this work, we use bipartite OTOC, a particular form of OTOC, to study information scrambling in the atom–field interaction models and the model of the Ising spin chain interacting with a tilted magnetic field. This is done considering the effects of open quantum systems. A relationship between information scrambling, using bipartite OTOC, and irreversibility, using entropy production, is probed under unitary dynamics. The equivalence of bipartite OTOC with operator entanglement is explicitly shown for the Ising model.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad77ee\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad77ee","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Bipartite OTOC in open quantum systems: information scrambling and irreversibility
The field of information scrambling has seen significant growth over the last decade, where the out-of-time-ordered correlator (OTOC) has emerged as a prominent tool to probe it. In this work, we use bipartite OTOC, a particular form of OTOC, to study information scrambling in the atom–field interaction models and the model of the Ising spin chain interacting with a tilted magnetic field. This is done considering the effects of open quantum systems. A relationship between information scrambling, using bipartite OTOC, and irreversibility, using entropy production, is probed under unitary dynamics. The equivalence of bipartite OTOC with operator entanglement is explicitly shown for the Ising model.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.