Wenhui Bao, Xiangru Hou, Lu Ga, Gerile Aodeng, Jun Ai, Ailing Su
{"title":"制备用于温度和金属离子 Co2+ 传感的谷胱甘肽-铜/银双金属纳米粒子","authors":"Wenhui Bao, Xiangru Hou, Lu Ga, Gerile Aodeng, Jun Ai, Ailing Su","doi":"10.1016/j.mtchem.2024.102304","DOIUrl":null,"url":null,"abstract":"In this work, copper silver bimetallic nanoparticles (Cu/Ag BNPs) with strong fluorescence were prepared using glutathione (GSH) as a reductant and protectant. The range of fluorescence signal of GSH-Cu/Ag BNPs to ambient temperature is 30∼90 °C has a sensitive response and can be used as a temperature sensor. The high fluorescence intensity of GSH-Cu/Ag BNPs at around 30 °C indicates that the detection of Co does not require harsh temperature conditions, which could be very convenient for future practical detection work. In addition, glutathione in Cu/Ag BNPs and the synergistic effect of Cu and Ag nanoparticles in Cu/Ag BNPs can be used as a metal ion sensor for Co fluorescence detection.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"42 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of glutathione-Cu/Ag bimetallic nanoparticles for temperature and metal ion Co2+ sensing\",\"authors\":\"Wenhui Bao, Xiangru Hou, Lu Ga, Gerile Aodeng, Jun Ai, Ailing Su\",\"doi\":\"10.1016/j.mtchem.2024.102304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, copper silver bimetallic nanoparticles (Cu/Ag BNPs) with strong fluorescence were prepared using glutathione (GSH) as a reductant and protectant. The range of fluorescence signal of GSH-Cu/Ag BNPs to ambient temperature is 30∼90 °C has a sensitive response and can be used as a temperature sensor. The high fluorescence intensity of GSH-Cu/Ag BNPs at around 30 °C indicates that the detection of Co does not require harsh temperature conditions, which could be very convenient for future practical detection work. In addition, glutathione in Cu/Ag BNPs and the synergistic effect of Cu and Ag nanoparticles in Cu/Ag BNPs can be used as a metal ion sensor for Co fluorescence detection.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102304\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102304","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究以谷胱甘肽(GSH)为还原剂和保护剂,制备了具有强荧光的铜银双金属纳米粒子(Cu/Ag BNPs)。GSH-Cu/Ag BNPs 对环境温度的荧光信号范围为 30 ∼ 90 °C,反应灵敏,可用作温度传感器。GSH-Cu/Ag BNPs 在 30 ℃ 左右的高荧光强度表明,Co 的检测不需要苛刻的温度条件,这为今后的实际检测工作提供了极大的便利。此外,Cu/Ag BNPs 中的谷胱甘肽以及 Cu/Ag BNPs 中 Cu 和 Ag 纳米粒子的协同效应可用作 Co 荧光检测的金属离子传感器。
Preparation of glutathione-Cu/Ag bimetallic nanoparticles for temperature and metal ion Co2+ sensing
In this work, copper silver bimetallic nanoparticles (Cu/Ag BNPs) with strong fluorescence were prepared using glutathione (GSH) as a reductant and protectant. The range of fluorescence signal of GSH-Cu/Ag BNPs to ambient temperature is 30∼90 °C has a sensitive response and can be used as a temperature sensor. The high fluorescence intensity of GSH-Cu/Ag BNPs at around 30 °C indicates that the detection of Co does not require harsh temperature conditions, which could be very convenient for future practical detection work. In addition, glutathione in Cu/Ag BNPs and the synergistic effect of Cu and Ag nanoparticles in Cu/Ag BNPs can be used as a metal ion sensor for Co fluorescence detection.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.