Thomas F. Winterstein, Christoph Malleier, Bernhard Klötzer, Volker Kahlenberg, Clivia Hejny, Maged F. Bekheet, Julian T. Müller, Aleksander Gurlo, Marc Heggen, Simon Penner
{"title":"甲烷干重整中的钼酸盐基双包晶材料","authors":"Thomas F. Winterstein, Christoph Malleier, Bernhard Klötzer, Volker Kahlenberg, Clivia Hejny, Maged F. Bekheet, Julian T. Müller, Aleksander Gurlo, Marc Heggen, Simon Penner","doi":"10.1016/j.mtchem.2024.102255","DOIUrl":null,"url":null,"abstract":"A series of SrMMoO (M = Ni, Co and (Ni,Co)) compounds was tested as representative model systems to highlight the capabilities of double perovskite structures as precursor materials for methane dry reforming (DRM) applications. Pretreatments in either pure hydrogen or dry reforming CO/CH mixtures exclusively yield partial decomposition of the initial double perovskite structures through exsolution of small Ni or CoO particles and the associated formation of additional crystalline compounds, such as SrMoO or SrCO (in DRM mixtures). The formation of a defective SrMoO transient phase has been revealed by in situ X-ray diffraction measurements in a pure hydrogen atmosphere. The main difference between the Ni- and Co-containing Sr molybdate perovskite structures is the much stronger oxidation propensity of exsolved Co, most likely by oxygen supply from the partially intact double perovskite structure. For SrNiMoO, the resulting metallic Ni-double perovskite interface is highly DRM active without strong coking, both if a pre-reduction step in hydrogen is carried out before the DRM experiment or if SrNiMoO is directly decomposed in the DRM mixture. Despite partial decomposition, the corresponding SrCoMoO structure is not active under DRM operation, most likely due to the in situ formation of small exsolved CoO particles, while Ni is exsolved in its metallic state. Different strategies to improve the catalytic activity, including hydrogen by-mixing, enhanced A-site deficiency or co-alloying with Ni have been followed, but only the latter has a beneficial effect on improving the DRM activity at compositions of SrNiCoMoO. In SrNiCoMoO, the substitution of Co by Ni suppresses the oxidation propensity of Co and during DRM yields the exsolution of Co-rich Ni–Co alloy nanoparticles. We also reveal a strong response of molybdenum as the B’ site cation to reduction and DRM treatment, causing the formation of reduced MoO phases accompanying the exsolution process.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"37 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molybdate-based double perovskite materials in methane dry reforming\",\"authors\":\"Thomas F. Winterstein, Christoph Malleier, Bernhard Klötzer, Volker Kahlenberg, Clivia Hejny, Maged F. Bekheet, Julian T. Müller, Aleksander Gurlo, Marc Heggen, Simon Penner\",\"doi\":\"10.1016/j.mtchem.2024.102255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of SrMMoO (M = Ni, Co and (Ni,Co)) compounds was tested as representative model systems to highlight the capabilities of double perovskite structures as precursor materials for methane dry reforming (DRM) applications. Pretreatments in either pure hydrogen or dry reforming CO/CH mixtures exclusively yield partial decomposition of the initial double perovskite structures through exsolution of small Ni or CoO particles and the associated formation of additional crystalline compounds, such as SrMoO or SrCO (in DRM mixtures). The formation of a defective SrMoO transient phase has been revealed by in situ X-ray diffraction measurements in a pure hydrogen atmosphere. The main difference between the Ni- and Co-containing Sr molybdate perovskite structures is the much stronger oxidation propensity of exsolved Co, most likely by oxygen supply from the partially intact double perovskite structure. For SrNiMoO, the resulting metallic Ni-double perovskite interface is highly DRM active without strong coking, both if a pre-reduction step in hydrogen is carried out before the DRM experiment or if SrNiMoO is directly decomposed in the DRM mixture. Despite partial decomposition, the corresponding SrCoMoO structure is not active under DRM operation, most likely due to the in situ formation of small exsolved CoO particles, while Ni is exsolved in its metallic state. Different strategies to improve the catalytic activity, including hydrogen by-mixing, enhanced A-site deficiency or co-alloying with Ni have been followed, but only the latter has a beneficial effect on improving the DRM activity at compositions of SrNiCoMoO. In SrNiCoMoO, the substitution of Co by Ni suppresses the oxidation propensity of Co and during DRM yields the exsolution of Co-rich Ni–Co alloy nanoparticles. We also reveal a strong response of molybdenum as the B’ site cation to reduction and DRM treatment, causing the formation of reduced MoO phases accompanying the exsolution process.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102255\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molybdate-based double perovskite materials in methane dry reforming
A series of SrMMoO (M = Ni, Co and (Ni,Co)) compounds was tested as representative model systems to highlight the capabilities of double perovskite structures as precursor materials for methane dry reforming (DRM) applications. Pretreatments in either pure hydrogen or dry reforming CO/CH mixtures exclusively yield partial decomposition of the initial double perovskite structures through exsolution of small Ni or CoO particles and the associated formation of additional crystalline compounds, such as SrMoO or SrCO (in DRM mixtures). The formation of a defective SrMoO transient phase has been revealed by in situ X-ray diffraction measurements in a pure hydrogen atmosphere. The main difference between the Ni- and Co-containing Sr molybdate perovskite structures is the much stronger oxidation propensity of exsolved Co, most likely by oxygen supply from the partially intact double perovskite structure. For SrNiMoO, the resulting metallic Ni-double perovskite interface is highly DRM active without strong coking, both if a pre-reduction step in hydrogen is carried out before the DRM experiment or if SrNiMoO is directly decomposed in the DRM mixture. Despite partial decomposition, the corresponding SrCoMoO structure is not active under DRM operation, most likely due to the in situ formation of small exsolved CoO particles, while Ni is exsolved in its metallic state. Different strategies to improve the catalytic activity, including hydrogen by-mixing, enhanced A-site deficiency or co-alloying with Ni have been followed, but only the latter has a beneficial effect on improving the DRM activity at compositions of SrNiCoMoO. In SrNiCoMoO, the substitution of Co by Ni suppresses the oxidation propensity of Co and during DRM yields the exsolution of Co-rich Ni–Co alloy nanoparticles. We also reveal a strong response of molybdenum as the B’ site cation to reduction and DRM treatment, causing the formation of reduced MoO phases accompanying the exsolution process.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.