Jiaying Zou, Qiaolan Yu, Dan Cao, Qianer Wang, Na Ma, Wei Dai
{"title":"以 MIL-101(Fe)为支撑的 NiFe2O4 磁性纳米颗粒作为双金属吸附剂,提高对左氧氟沙星的捕获能力","authors":"Jiaying Zou, Qiaolan Yu, Dan Cao, Qianer Wang, Na Ma, Wei Dai","doi":"10.1016/j.mtchem.2024.102310","DOIUrl":null,"url":null,"abstract":"Levofloxacin (LVX) capture with microcrystalline particles of monometallic metal-organic frameworks (MOFs) is definitely restricted and challenged by its difficulties in solid-liquid separation and enhanced of adsorption capacity issues. Meanwhile, the development of magnetic MOFs with excellent adsorption capabilities and outstanding recyclability is crucial. Herein, a novel magnetic Fe/Ni bimetal MOFs composite (MIL-101(Fe)@NiFeO, MNFO) for LVX capture has been effectively fabricated for LVX capture, utilizing MIL-101(Fe) as the primary adsorbent and NiFeO nanoparticles as the magnetic element. Attributed to the synergistic ability of bimetal ions (Fe and Ni), MNFO exhibits a significant adsorption capacity (335 mg/g) and rapid adsorption rate (10 min) towards LVX. The adsorption capacity indicates an increasing-then-decreasing trend with an increase of the pH values. Additionally, the adsorption data are well fitted by the Freundlich and pseudo-second-order kinetic models. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. In addition, the adsorbent demonstrated excellent reusability, as it could be readily recovered from the liquid phase through the magnetic properties of NiFeO. Remarkably, it retained approximately 90 % of its adsorption capacity of the uptakes after 5 cycles. This study offers a innovative approach to the development of highly efficient adsorbents for capturing LVX from water.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"194 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin\",\"authors\":\"Jiaying Zou, Qiaolan Yu, Dan Cao, Qianer Wang, Na Ma, Wei Dai\",\"doi\":\"10.1016/j.mtchem.2024.102310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Levofloxacin (LVX) capture with microcrystalline particles of monometallic metal-organic frameworks (MOFs) is definitely restricted and challenged by its difficulties in solid-liquid separation and enhanced of adsorption capacity issues. Meanwhile, the development of magnetic MOFs with excellent adsorption capabilities and outstanding recyclability is crucial. Herein, a novel magnetic Fe/Ni bimetal MOFs composite (MIL-101(Fe)@NiFeO, MNFO) for LVX capture has been effectively fabricated for LVX capture, utilizing MIL-101(Fe) as the primary adsorbent and NiFeO nanoparticles as the magnetic element. Attributed to the synergistic ability of bimetal ions (Fe and Ni), MNFO exhibits a significant adsorption capacity (335 mg/g) and rapid adsorption rate (10 min) towards LVX. The adsorption capacity indicates an increasing-then-decreasing trend with an increase of the pH values. Additionally, the adsorption data are well fitted by the Freundlich and pseudo-second-order kinetic models. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. In addition, the adsorbent demonstrated excellent reusability, as it could be readily recovered from the liquid phase through the magnetic properties of NiFeO. Remarkably, it retained approximately 90 % of its adsorption capacity of the uptakes after 5 cycles. This study offers a innovative approach to the development of highly efficient adsorbents for capturing LVX from water.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102310\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102310","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin
Levofloxacin (LVX) capture with microcrystalline particles of monometallic metal-organic frameworks (MOFs) is definitely restricted and challenged by its difficulties in solid-liquid separation and enhanced of adsorption capacity issues. Meanwhile, the development of magnetic MOFs with excellent adsorption capabilities and outstanding recyclability is crucial. Herein, a novel magnetic Fe/Ni bimetal MOFs composite (MIL-101(Fe)@NiFeO, MNFO) for LVX capture has been effectively fabricated for LVX capture, utilizing MIL-101(Fe) as the primary adsorbent and NiFeO nanoparticles as the magnetic element. Attributed to the synergistic ability of bimetal ions (Fe and Ni), MNFO exhibits a significant adsorption capacity (335 mg/g) and rapid adsorption rate (10 min) towards LVX. The adsorption capacity indicates an increasing-then-decreasing trend with an increase of the pH values. Additionally, the adsorption data are well fitted by the Freundlich and pseudo-second-order kinetic models. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. In addition, the adsorbent demonstrated excellent reusability, as it could be readily recovered from the liquid phase through the magnetic properties of NiFeO. Remarkably, it retained approximately 90 % of its adsorption capacity of the uptakes after 5 cycles. This study offers a innovative approach to the development of highly efficient adsorbents for capturing LVX from water.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.