星系聚类的快速、精确和惯性前向建模 第一部分:静止框架中的星系

Julia Stadler, Fabian Schmidt, Martin Reinecke
{"title":"星系聚类的快速、精确和惯性前向建模 第一部分:静止框架中的星系","authors":"Julia Stadler, Fabian Schmidt, Martin Reinecke","doi":"arxiv-2409.10937","DOIUrl":null,"url":null,"abstract":"Forward models of the galaxy density field enable simulation based inference\nas well as field level inference of galaxy clustering. However, these analysis\ntechniques require forward models that are both computationally fast and robust\nto modeling uncertainties in the relation between galaxies and matter. Both\nrequirements can be addressed with the Effective Field Theory of Large Scale\nStructure. Here, we focus on the physical and numerical convergence of the\nLEFTfield model. Based on the perturbative nature of the forward model, we\nderive an analytic understanding of the leading numerical errors, and we\ncompare our estimates to high-resolution and N-body references. This allows us\nto derive a set of best-practice recommendations for the numerical accuracy\nparameters, which are completely specified by the desired order of the\nperturbative solution and the cut-off scale. We verify these recommendations by\nan extended set of parameter recovery tests from fully nonlinear mock data and\nfind very consistent results. A single evaluation of the forward model takes\nseconds, making cosmological analyses of galaxy clustering data based on\nforward models computationally feasible.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast, Accurate and Perturbative Forward Modeling of Galaxy Clustering Part I: Galaxies in the Restframe\",\"authors\":\"Julia Stadler, Fabian Schmidt, Martin Reinecke\",\"doi\":\"arxiv-2409.10937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forward models of the galaxy density field enable simulation based inference\\nas well as field level inference of galaxy clustering. However, these analysis\\ntechniques require forward models that are both computationally fast and robust\\nto modeling uncertainties in the relation between galaxies and matter. Both\\nrequirements can be addressed with the Effective Field Theory of Large Scale\\nStructure. Here, we focus on the physical and numerical convergence of the\\nLEFTfield model. Based on the perturbative nature of the forward model, we\\nderive an analytic understanding of the leading numerical errors, and we\\ncompare our estimates to high-resolution and N-body references. This allows us\\nto derive a set of best-practice recommendations for the numerical accuracy\\nparameters, which are completely specified by the desired order of the\\nperturbative solution and the cut-off scale. We verify these recommendations by\\nan extended set of parameter recovery tests from fully nonlinear mock data and\\nfind very consistent results. A single evaluation of the forward model takes\\nseconds, making cosmological analyses of galaxy clustering data based on\\nforward models computationally feasible.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星系密度场的前向模型可以进行基于模拟的推断以及星系聚类的场级推断。然而,这些分析技术要求前向模型既要计算速度快,又要对星系与物质之间关系的建模不确定性具有鲁棒性。大尺度结构有效场理论(Effective Field Theory of Large ScaleStructure)可以满足这两个要求。在这里,我们重点讨论了LEFT场模型的物理和数值收敛性。基于前向模型的微扰性质,我们对主要的数值误差有了分析性的理解,并将我们的估计与高分辨率和N体参考进行了比较。这样,我们就得出了一组数值精度参数的最佳实践建议,这些参数完全由所需的扰动解阶数和截止尺度所规定。我们通过对完全非线性模拟数据的参数恢复测试,验证了这些建议,并发现了非常一致的结果。对前导模型的一次评估只需要几秒钟,这使得基于前导模型的星系聚类数据宇宙学分析在计算上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast, Accurate and Perturbative Forward Modeling of Galaxy Clustering Part I: Galaxies in the Restframe
Forward models of the galaxy density field enable simulation based inference as well as field level inference of galaxy clustering. However, these analysis techniques require forward models that are both computationally fast and robust to modeling uncertainties in the relation between galaxies and matter. Both requirements can be addressed with the Effective Field Theory of Large Scale Structure. Here, we focus on the physical and numerical convergence of the LEFTfield model. Based on the perturbative nature of the forward model, we derive an analytic understanding of the leading numerical errors, and we compare our estimates to high-resolution and N-body references. This allows us to derive a set of best-practice recommendations for the numerical accuracy parameters, which are completely specified by the desired order of the perturbative solution and the cut-off scale. We verify these recommendations by an extended set of parameter recovery tests from fully nonlinear mock data and find very consistent results. A single evaluation of the forward model takes seconds, making cosmological analyses of galaxy clustering data based on forward models computationally feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信