Pengli Shu, Xin Tian, Qiang Guo, Xiaosen Ren, Bohui Zhao, Huanfei Wen, Jun Tang, Yanjun Li, Sugawara Yasuhiro, Zongmin Ma and Jun Liu
{"title":"研究 CeO2 支持的金簇的几何构型和电子特性","authors":"Pengli Shu, Xin Tian, Qiang Guo, Xiaosen Ren, Bohui Zhao, Huanfei Wen, Jun Tang, Yanjun Li, Sugawara Yasuhiro, Zongmin Ma and Jun Liu","doi":"10.1088/1402-4896/ad77f9","DOIUrl":null,"url":null,"abstract":"A detailed understanding of the geometric structure and electronic properties of gold nanoparticles on the ceria surface is crucial for comprehending their unique catalytic activity. Using the first-principles method based on density functional theory, the adsorption of Aux (x = 1–4) clusters on the CeO2(111) surface was studied. It was discovered that the standing configurations of Au2 and Au3, as well as the tetrahedral structure of Au4, are the most stable adsorption structures. The stability of these configurations is jointly determined by the number and strength of Au-Au bonds, the Au-O bonding energy, and the interaction dynamics between the clusters and the substrate. The analysis of Bader charge, difference charge density and density of states suggested that lattice relaxation and electronic localization occur in the reduced Ce3+. The reduced amount and location of Ce3+ are significantly influenced by the position and charge transfer amount of Aux cluster. The adsorption of CO on Au4/CeO2(111) indicated that stronger Au-C bonding energy due to the hybridization of Au-5d and C-2p, thereby enhancing the catalytic activity for CO oxidation reactions.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"75 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into geometric configurations and electronic properties of CeO2-supported gold clusters\",\"authors\":\"Pengli Shu, Xin Tian, Qiang Guo, Xiaosen Ren, Bohui Zhao, Huanfei Wen, Jun Tang, Yanjun Li, Sugawara Yasuhiro, Zongmin Ma and Jun Liu\",\"doi\":\"10.1088/1402-4896/ad77f9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed understanding of the geometric structure and electronic properties of gold nanoparticles on the ceria surface is crucial for comprehending their unique catalytic activity. Using the first-principles method based on density functional theory, the adsorption of Aux (x = 1–4) clusters on the CeO2(111) surface was studied. It was discovered that the standing configurations of Au2 and Au3, as well as the tetrahedral structure of Au4, are the most stable adsorption structures. The stability of these configurations is jointly determined by the number and strength of Au-Au bonds, the Au-O bonding energy, and the interaction dynamics between the clusters and the substrate. The analysis of Bader charge, difference charge density and density of states suggested that lattice relaxation and electronic localization occur in the reduced Ce3+. The reduced amount and location of Ce3+ are significantly influenced by the position and charge transfer amount of Aux cluster. The adsorption of CO on Au4/CeO2(111) indicated that stronger Au-C bonding energy due to the hybridization of Au-5d and C-2p, thereby enhancing the catalytic activity for CO oxidation reactions.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad77f9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad77f9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation into geometric configurations and electronic properties of CeO2-supported gold clusters
A detailed understanding of the geometric structure and electronic properties of gold nanoparticles on the ceria surface is crucial for comprehending their unique catalytic activity. Using the first-principles method based on density functional theory, the adsorption of Aux (x = 1–4) clusters on the CeO2(111) surface was studied. It was discovered that the standing configurations of Au2 and Au3, as well as the tetrahedral structure of Au4, are the most stable adsorption structures. The stability of these configurations is jointly determined by the number and strength of Au-Au bonds, the Au-O bonding energy, and the interaction dynamics between the clusters and the substrate. The analysis of Bader charge, difference charge density and density of states suggested that lattice relaxation and electronic localization occur in the reduced Ce3+. The reduced amount and location of Ce3+ are significantly influenced by the position and charge transfer amount of Aux cluster. The adsorption of CO on Au4/CeO2(111) indicated that stronger Au-C bonding energy due to the hybridization of Au-5d and C-2p, thereby enhancing the catalytic activity for CO oxidation reactions.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.