具有空间分数导数和可变沉积通量的流体-三角洲沉积过程的前固定数值方法

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jaya Joshi, Rajeev, J F Gómez-Aguilar and J E Lavín-Delgado
{"title":"具有空间分数导数和可变沉积通量的流体-三角洲沉积过程的前固定数值方法","authors":"Jaya Joshi, Rajeev, J F Gómez-Aguilar and J E Lavín-Delgado","doi":"10.1088/1402-4896/ad78c6","DOIUrl":null,"url":null,"abstract":"This paper centers around a space-fractional mathematical model for a fluvio-deltaic sedimentation process which involves a space-fractional derivative (Caputo derivative) and time dependent variable sediment flux to investigates the movement of shoreline in a sedimentary ocean basin. This model is a specific case of a basic shoreline model and analogous to a Stefan problem. The numerical solution to the problem is acquired by employing a front-fixing explicit finite difference method. The consistency, stability and convergence of the numerical scheme are theoretically analyzed. The effects of variable sediment flux on the movement of shoreline position and the height of sediments are also assessed for different cases.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A front-fixing numerical method for a fluvio-deltaic sedimentation process with thespace fractional derivative and variable sediment flux\",\"authors\":\"Jaya Joshi, Rajeev, J F Gómez-Aguilar and J E Lavín-Delgado\",\"doi\":\"10.1088/1402-4896/ad78c6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper centers around a space-fractional mathematical model for a fluvio-deltaic sedimentation process which involves a space-fractional derivative (Caputo derivative) and time dependent variable sediment flux to investigates the movement of shoreline in a sedimentary ocean basin. This model is a specific case of a basic shoreline model and analogous to a Stefan problem. The numerical solution to the problem is acquired by employing a front-fixing explicit finite difference method. The consistency, stability and convergence of the numerical scheme are theoretically analyzed. The effects of variable sediment flux on the movement of shoreline position and the height of sediments are also assessed for different cases.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad78c6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad78c6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该模型涉及空间分数导数(卡普托导数)和随时间变化的沉积通量,用于研究沉积海盆中海岸线的移动。该模型是基本海岸线模型的一个特例,类似于斯特凡问题。问题的数值解采用前固定显式有限差分法。对数值方案的一致性、稳定性和收敛性进行了理论分析。此外,还评估了不同情况下可变泥沙通量对海岸线位置移动和泥沙高度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A front-fixing numerical method for a fluvio-deltaic sedimentation process with thespace fractional derivative and variable sediment flux
This paper centers around a space-fractional mathematical model for a fluvio-deltaic sedimentation process which involves a space-fractional derivative (Caputo derivative) and time dependent variable sediment flux to investigates the movement of shoreline in a sedimentary ocean basin. This model is a specific case of a basic shoreline model and analogous to a Stefan problem. The numerical solution to the problem is acquired by employing a front-fixing explicit finite difference method. The consistency, stability and convergence of the numerical scheme are theoretically analyzed. The effects of variable sediment flux on the movement of shoreline position and the height of sediments are also assessed for different cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Scripta
Physica Scripta 物理-物理:综合
CiteScore
3.70
自引率
3.40%
发文量
782
审稿时长
4.5 months
期刊介绍: Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed: -Atomic, molecular and optical physics- Plasma physics- Condensed matter physics- Mathematical physics- Astrophysics- High energy physics- Nuclear physics- Nonlinear physics. The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信