带波浪干扰的充电器安置

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jing Xue;Die Wu;Jian Peng;Wenzheng Xu;Tang Liu
{"title":"带波浪干扰的充电器安置","authors":"Jing Xue;Die Wu;Jian Peng;Wenzheng Xu;Tang Liu","doi":"10.1109/TMC.2024.3460403","DOIUrl":null,"url":null,"abstract":"To guarantee the reliability for WRSNs, placing sufficient static chargers effectively ensures charging coverage for the entire network. However, this approach leads to a considerable number of sensors located within charging overlaps. The destructive wave interference caused by concurrent charging in these overlaps may weaken sensors received power, thereby negatively impacting charging performance. This work addresses a CHArging utIlity maximizatioN (CHAIN) problem, which aims to maximize the overall charging utility while considering wave interference among multiple chargers. Specifically, given a set of stationary sensors, we investigate how to determine optimal positions for a fixed number of chargers. To tackle this problem, we first develop a charging model with wave interference, then propose a two-step charger placement scheme to identify the optimal charger positions. In the first step, we maximize the overall additive power of the waves involved in interference by selecting an appropriate initial position for each charger. Then, in the second step, we maximize the overall charging utility by finding the optimal final position for each charger around its initial position. Finally, to evaluate the performance of our scheme, we conduct extensive simulations and field experiments and the results suggest that CHAIN performs better than the existing algorithms.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"261-275"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charger Placement With Wave Interference\",\"authors\":\"Jing Xue;Die Wu;Jian Peng;Wenzheng Xu;Tang Liu\",\"doi\":\"10.1109/TMC.2024.3460403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To guarantee the reliability for WRSNs, placing sufficient static chargers effectively ensures charging coverage for the entire network. However, this approach leads to a considerable number of sensors located within charging overlaps. The destructive wave interference caused by concurrent charging in these overlaps may weaken sensors received power, thereby negatively impacting charging performance. This work addresses a CHArging utIlity maximizatioN (CHAIN) problem, which aims to maximize the overall charging utility while considering wave interference among multiple chargers. Specifically, given a set of stationary sensors, we investigate how to determine optimal positions for a fixed number of chargers. To tackle this problem, we first develop a charging model with wave interference, then propose a two-step charger placement scheme to identify the optimal charger positions. In the first step, we maximize the overall additive power of the waves involved in interference by selecting an appropriate initial position for each charger. Then, in the second step, we maximize the overall charging utility by finding the optimal final position for each charger around its initial position. Finally, to evaluate the performance of our scheme, we conduct extensive simulations and field experiments and the results suggest that CHAIN performs better than the existing algorithms.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 1\",\"pages\":\"261-275\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684163/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684163/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charger Placement With Wave Interference
To guarantee the reliability for WRSNs, placing sufficient static chargers effectively ensures charging coverage for the entire network. However, this approach leads to a considerable number of sensors located within charging overlaps. The destructive wave interference caused by concurrent charging in these overlaps may weaken sensors received power, thereby negatively impacting charging performance. This work addresses a CHArging utIlity maximizatioN (CHAIN) problem, which aims to maximize the overall charging utility while considering wave interference among multiple chargers. Specifically, given a set of stationary sensors, we investigate how to determine optimal positions for a fixed number of chargers. To tackle this problem, we first develop a charging model with wave interference, then propose a two-step charger placement scheme to identify the optimal charger positions. In the first step, we maximize the overall additive power of the waves involved in interference by selecting an appropriate initial position for each charger. Then, in the second step, we maximize the overall charging utility by finding the optimal final position for each charger around its initial position. Finally, to evaluate the performance of our scheme, we conduct extensive simulations and field experiments and the results suggest that CHAIN performs better than the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信