{"title":"共振李亚普诺夫中心定理在双周期水弹性游波中的应用","authors":"R. Ahmad, M. D. Groves, D. Nilsson","doi":"10.1007/s00332-024-10073-z","DOIUrl":null,"url":null,"abstract":"<p>We present a Lyapunov centre theorem for an antisymplectically reversible Hamiltonian system exhibiting a nondegenerate 1 : 1 or <span>\\(1:-1\\)</span> semisimple resonance as a detuning parameter is varied. The system can be finite- or infinite-dimensional (and quasilinear) and have a non-constant symplectic structure. We allow the origin to be a ‘trivial’ eigenvalue arising from a translational symmetry or, in an infinite-dimensional setting, to lie in the continuous spectrum of the linearised Hamiltonian vector field provided a compatibility condition on its range is satisfied. As an application, we show how Kirchgässner’s spatial dynamics approach can be used to construct doubly periodic travelling waves on the surface of a three-dimensional body of water (of finite or infinite depth) beneath a thin ice sheet (‘hydroelastic waves’). The hydrodynamic problem is formulated as a reversible Hamiltonian system in which an arbitrary horizontal spatial direction is the time-like variable, and the infinite-dimensional phase space consists of wave profiles which are periodic (with fixed period) in a second, different horizontal direction. Applying our Lyapunov centre theorem at a point in parameter space associated with a 1 : 1 or <span>\\(1:-1\\)</span> semisimple resonance yields a periodic solution of the spatial Hamiltonian system corresponding to a doubly periodic hydroelastic wave.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Resonant Lyapunov Centre Theorem with an Application to Doubly Periodic Travelling Hydroelastic Waves\",\"authors\":\"R. Ahmad, M. D. Groves, D. Nilsson\",\"doi\":\"10.1007/s00332-024-10073-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a Lyapunov centre theorem for an antisymplectically reversible Hamiltonian system exhibiting a nondegenerate 1 : 1 or <span>\\\\(1:-1\\\\)</span> semisimple resonance as a detuning parameter is varied. The system can be finite- or infinite-dimensional (and quasilinear) and have a non-constant symplectic structure. We allow the origin to be a ‘trivial’ eigenvalue arising from a translational symmetry or, in an infinite-dimensional setting, to lie in the continuous spectrum of the linearised Hamiltonian vector field provided a compatibility condition on its range is satisfied. As an application, we show how Kirchgässner’s spatial dynamics approach can be used to construct doubly periodic travelling waves on the surface of a three-dimensional body of water (of finite or infinite depth) beneath a thin ice sheet (‘hydroelastic waves’). The hydrodynamic problem is formulated as a reversible Hamiltonian system in which an arbitrary horizontal spatial direction is the time-like variable, and the infinite-dimensional phase space consists of wave profiles which are periodic (with fixed period) in a second, different horizontal direction. Applying our Lyapunov centre theorem at a point in parameter space associated with a 1 : 1 or <span>\\\\(1:-1\\\\)</span> semisimple resonance yields a periodic solution of the spatial Hamiltonian system corresponding to a doubly periodic hydroelastic wave.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10073-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10073-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Resonant Lyapunov Centre Theorem with an Application to Doubly Periodic Travelling Hydroelastic Waves
We present a Lyapunov centre theorem for an antisymplectically reversible Hamiltonian system exhibiting a nondegenerate 1 : 1 or \(1:-1\) semisimple resonance as a detuning parameter is varied. The system can be finite- or infinite-dimensional (and quasilinear) and have a non-constant symplectic structure. We allow the origin to be a ‘trivial’ eigenvalue arising from a translational symmetry or, in an infinite-dimensional setting, to lie in the continuous spectrum of the linearised Hamiltonian vector field provided a compatibility condition on its range is satisfied. As an application, we show how Kirchgässner’s spatial dynamics approach can be used to construct doubly periodic travelling waves on the surface of a three-dimensional body of water (of finite or infinite depth) beneath a thin ice sheet (‘hydroelastic waves’). The hydrodynamic problem is formulated as a reversible Hamiltonian system in which an arbitrary horizontal spatial direction is the time-like variable, and the infinite-dimensional phase space consists of wave profiles which are periodic (with fixed period) in a second, different horizontal direction. Applying our Lyapunov centre theorem at a point in parameter space associated with a 1 : 1 or \(1:-1\) semisimple resonance yields a periodic solution of the spatial Hamiltonian system corresponding to a doubly periodic hydroelastic wave.