Tasmia Zaman, Yue Jiang, Sajjad Seifi Mofarah, Saroj Kumar Bhattacharyya, Pramod Koshy, John E. Daniels, Charles Christopher Sorrell
{"title":"BaO-TiO2 体系中的相平衡","authors":"Tasmia Zaman, Yue Jiang, Sajjad Seifi Mofarah, Saroj Kumar Bhattacharyya, Pramod Koshy, John E. Daniels, Charles Christopher Sorrell","doi":"10.1111/jace.20143","DOIUrl":null,"url":null,"abstract":"<p>The system BaO–TiO<sub>2</sub> is technically important because it contains multiple dielectric and ferroelectric phases, including the important BaTiO<sub>3</sub>, which is one of the most widely studied dielectric perovskites owing to its dual piezoelectric and ferroelectric properties. The present work revises the subsolidus phase equilibria data by synthesizing previous phase equilibria data and new experimental results using high-temperature (600°–1300°C) and long-term (≤336 h) equilibration, coupled with analytical work based principally on room-temperature X-ray diffraction. The resultant phase diagram is given in both mole and weight percents, extending from the liquidus surface (not investigated) to absolute zero temperature (for inclusion of the previously excluded crystallographic and ferroelectric phase transformations). The major features include (1) correction of four eutectoid and three peritectoid reactions and corresponding temperatures, (2) indication of inferred partial solid solubilities, (3) clarification of the BaTiO<sub>3</sub> solid solubility homogeneity regions, and (4) specification of some invariant point compositions on the liquidus surface.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20143","citationCount":"0","resultStr":"{\"title\":\"Phase equilibria in the system BaO–TiO2\",\"authors\":\"Tasmia Zaman, Yue Jiang, Sajjad Seifi Mofarah, Saroj Kumar Bhattacharyya, Pramod Koshy, John E. Daniels, Charles Christopher Sorrell\",\"doi\":\"10.1111/jace.20143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The system BaO–TiO<sub>2</sub> is technically important because it contains multiple dielectric and ferroelectric phases, including the important BaTiO<sub>3</sub>, which is one of the most widely studied dielectric perovskites owing to its dual piezoelectric and ferroelectric properties. The present work revises the subsolidus phase equilibria data by synthesizing previous phase equilibria data and new experimental results using high-temperature (600°–1300°C) and long-term (≤336 h) equilibration, coupled with analytical work based principally on room-temperature X-ray diffraction. The resultant phase diagram is given in both mole and weight percents, extending from the liquidus surface (not investigated) to absolute zero temperature (for inclusion of the previously excluded crystallographic and ferroelectric phase transformations). The major features include (1) correction of four eutectoid and three peritectoid reactions and corresponding temperatures, (2) indication of inferred partial solid solubilities, (3) clarification of the BaTiO<sub>3</sub> solid solubility homogeneity regions, and (4) specification of some invariant point compositions on the liquidus surface.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20143\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20143","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The system BaO–TiO2 is technically important because it contains multiple dielectric and ferroelectric phases, including the important BaTiO3, which is one of the most widely studied dielectric perovskites owing to its dual piezoelectric and ferroelectric properties. The present work revises the subsolidus phase equilibria data by synthesizing previous phase equilibria data and new experimental results using high-temperature (600°–1300°C) and long-term (≤336 h) equilibration, coupled with analytical work based principally on room-temperature X-ray diffraction. The resultant phase diagram is given in both mole and weight percents, extending from the liquidus surface (not investigated) to absolute zero temperature (for inclusion of the previously excluded crystallographic and ferroelectric phase transformations). The major features include (1) correction of four eutectoid and three peritectoid reactions and corresponding temperatures, (2) indication of inferred partial solid solubilities, (3) clarification of the BaTiO3 solid solubility homogeneity regions, and (4) specification of some invariant point compositions on the liquidus surface.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.