{"title":"类磷化物 ZnS 陶瓷纳米层结构、电子和光学特性的应变工程:密度泛函理论研究","authors":"Esmaeil Pakizeh, Mahnaz Mohammadi","doi":"10.1111/jace.20125","DOIUrl":null,"url":null,"abstract":"<p>Strain engineering is a powerful technique for controlling the performance of semiconductor ceramic systems. In this article, the effect of strain engineering, specifically biaxial compressive and tensile strains, on the bonding characteristics, structure, electronic, and optical properties of nonplanar phosphorene-like (NPP) ZnS ceramic nanolayers was investigated using density functional theory. It was observed that this ceramic exhibits greater stability under significant tensile strains. The structural stability of NPP-ZnS ceramic, both with and without biaxial strain, was confirmed by its negative formation energy. Biaxial strain strongly influences the electronic band structure of NPP-ZnS ceramic nanolayers, leading to a transformation from a direct band gap to an indirect gap under tensile strain. Additionally, the bandgap decreases under compressive strain, while it slightly increases under tensile strain. Various optical properties, including refractive index, extinction coefficient, absorption, reflectivity, optical conductivity, and optical susceptibility, were calculated. Biaxial compressive and tensile strains alter the optical properties, shifting them to higher or lower frequencies. NPP-ZnS ceramic nanolayers exhibit high optical absorption in the UV range, which can be further enhanced by biaxial strain. Furthermore, under increasing compressive strain, the absorption edge moves toward higher energies. This improvement in optical absorption expands the potential applications of NPP-ZnS ceramic nanolayers in optoelectronic devices.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain engineering of the structural, electronic, and optical properties of phosphorene-like ZnS ceramic nanolayers: Density functional theory study\",\"authors\":\"Esmaeil Pakizeh, Mahnaz Mohammadi\",\"doi\":\"10.1111/jace.20125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strain engineering is a powerful technique for controlling the performance of semiconductor ceramic systems. In this article, the effect of strain engineering, specifically biaxial compressive and tensile strains, on the bonding characteristics, structure, electronic, and optical properties of nonplanar phosphorene-like (NPP) ZnS ceramic nanolayers was investigated using density functional theory. It was observed that this ceramic exhibits greater stability under significant tensile strains. The structural stability of NPP-ZnS ceramic, both with and without biaxial strain, was confirmed by its negative formation energy. Biaxial strain strongly influences the electronic band structure of NPP-ZnS ceramic nanolayers, leading to a transformation from a direct band gap to an indirect gap under tensile strain. Additionally, the bandgap decreases under compressive strain, while it slightly increases under tensile strain. Various optical properties, including refractive index, extinction coefficient, absorption, reflectivity, optical conductivity, and optical susceptibility, were calculated. Biaxial compressive and tensile strains alter the optical properties, shifting them to higher or lower frequencies. NPP-ZnS ceramic nanolayers exhibit high optical absorption in the UV range, which can be further enhanced by biaxial strain. Furthermore, under increasing compressive strain, the absorption edge moves toward higher energies. This improvement in optical absorption expands the potential applications of NPP-ZnS ceramic nanolayers in optoelectronic devices.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20125\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Strain engineering of the structural, electronic, and optical properties of phosphorene-like ZnS ceramic nanolayers: Density functional theory study
Strain engineering is a powerful technique for controlling the performance of semiconductor ceramic systems. In this article, the effect of strain engineering, specifically biaxial compressive and tensile strains, on the bonding characteristics, structure, electronic, and optical properties of nonplanar phosphorene-like (NPP) ZnS ceramic nanolayers was investigated using density functional theory. It was observed that this ceramic exhibits greater stability under significant tensile strains. The structural stability of NPP-ZnS ceramic, both with and without biaxial strain, was confirmed by its negative formation energy. Biaxial strain strongly influences the electronic band structure of NPP-ZnS ceramic nanolayers, leading to a transformation from a direct band gap to an indirect gap under tensile strain. Additionally, the bandgap decreases under compressive strain, while it slightly increases under tensile strain. Various optical properties, including refractive index, extinction coefficient, absorption, reflectivity, optical conductivity, and optical susceptibility, were calculated. Biaxial compressive and tensile strains alter the optical properties, shifting them to higher or lower frequencies. NPP-ZnS ceramic nanolayers exhibit high optical absorption in the UV range, which can be further enhanced by biaxial strain. Furthermore, under increasing compressive strain, the absorption edge moves toward higher energies. This improvement in optical absorption expands the potential applications of NPP-ZnS ceramic nanolayers in optoelectronic devices.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.