{"title":"论$S^2$上$SO(n)$几何群分类空间的同调性","authors":"Yuki Minowa","doi":"10.4310/hha.2024.v26.n2.a6","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{G}_\\alpha (X,G)$ be the $G$-gauge group over a space $X$ corresponding to a map $\\alpha : X \\to B\\mathcal{G}_1$. We compute the integral cohomology of $B\\mathcal{G}_1 (S^2, SO(n))$ for $n = 3, 4$. We also show that the homology of $B\\mathcal{G}_1 (S^2, SO(n))$ is torsion free if and only if $n \\leqslant 4$. As an application, we classify the homotopy types of $SO(n)$-gauge groups over a Riemann surface for $n \\leqslant 4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cohomology of the classifying spaces of $SO(n)$-gauge groups over $S^2$\",\"authors\":\"Yuki Minowa\",\"doi\":\"10.4310/hha.2024.v26.n2.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{G}_\\\\alpha (X,G)$ be the $G$-gauge group over a space $X$ corresponding to a map $\\\\alpha : X \\\\to B\\\\mathcal{G}_1$. We compute the integral cohomology of $B\\\\mathcal{G}_1 (S^2, SO(n))$ for $n = 3, 4$. We also show that the homology of $B\\\\mathcal{G}_1 (S^2, SO(n))$ is torsion free if and only if $n \\\\leqslant 4$. As an application, we classify the homotopy types of $SO(n)$-gauge groups over a Riemann surface for $n \\\\leqslant 4$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n2.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the cohomology of the classifying spaces of $SO(n)$-gauge groups over $S^2$
Let $\mathcal{G}_\alpha (X,G)$ be the $G$-gauge group over a space $X$ corresponding to a map $\alpha : X \to B\mathcal{G}_1$. We compute the integral cohomology of $B\mathcal{G}_1 (S^2, SO(n))$ for $n = 3, 4$. We also show that the homology of $B\mathcal{G}_1 (S^2, SO(n))$ is torsion free if and only if $n \leqslant 4$. As an application, we classify the homotopy types of $SO(n)$-gauge groups over a Riemann surface for $n \leqslant 4$.