论$S^2$上$SO(n)$几何群分类空间的同调性

Pub Date : 2024-09-18 DOI:10.4310/hha.2024.v26.n2.a6
Yuki Minowa
{"title":"论$S^2$上$SO(n)$几何群分类空间的同调性","authors":"Yuki Minowa","doi":"10.4310/hha.2024.v26.n2.a6","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{G}_\\alpha (X,G)$ be the $G$-gauge group over a space $X$ corresponding to a map $\\alpha : X \\to B\\mathcal{G}_1$. We compute the integral cohomology of $B\\mathcal{G}_1 (S^2, SO(n))$ for $n = 3, 4$. We also show that the homology of $B\\mathcal{G}_1 (S^2, SO(n))$ is torsion free if and only if $n \\leqslant 4$. As an application, we classify the homotopy types of $SO(n)$-gauge groups over a Riemann surface for $n \\leqslant 4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cohomology of the classifying spaces of $SO(n)$-gauge groups over $S^2$\",\"authors\":\"Yuki Minowa\",\"doi\":\"10.4310/hha.2024.v26.n2.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{G}_\\\\alpha (X,G)$ be the $G$-gauge group over a space $X$ corresponding to a map $\\\\alpha : X \\\\to B\\\\mathcal{G}_1$. We compute the integral cohomology of $B\\\\mathcal{G}_1 (S^2, SO(n))$ for $n = 3, 4$. We also show that the homology of $B\\\\mathcal{G}_1 (S^2, SO(n))$ is torsion free if and only if $n \\\\leqslant 4$. As an application, we classify the homotopy types of $SO(n)$-gauge groups over a Riemann surface for $n \\\\leqslant 4$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n2.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathcal{G}_\alpha (X,G)$ 是空间 $X$ 上的 $G$ 引力群,对应于映射 $\alpha : X \to B\mathcal{G}_1$.我们计算了 $n = 3, 4$ 时 $B\mathcal{G}_1 (S^2, SO(n))$ 的积分同调。我们还证明了当且仅当 $n \leqslant 4$ 时 $B\mathcal{G}_1 (S^2, SO(n))$ 的同调是无扭转的。作为应用,我们对黎曼曲面上 $n \leqslant 4$ 的 $SO(n)$gege 群的同调类型进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the cohomology of the classifying spaces of $SO(n)$-gauge groups over $S^2$
Let $\mathcal{G}_\alpha (X,G)$ be the $G$-gauge group over a space $X$ corresponding to a map $\alpha : X \to B\mathcal{G}_1$. We compute the integral cohomology of $B\mathcal{G}_1 (S^2, SO(n))$ for $n = 3, 4$. We also show that the homology of $B\mathcal{G}_1 (S^2, SO(n))$ is torsion free if and only if $n \leqslant 4$. As an application, we classify the homotopy types of $SO(n)$-gauge groups over a Riemann surface for $n \leqslant 4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信