CP(V) 的有理圆变椭圆同调

IF 0.8 4区 数学 Q2 MATHEMATICS
Matteo Barucco
{"title":"CP(V) 的有理圆变椭圆同调","authors":"Matteo Barucco","doi":"10.4310/hha.2024.v26.n2.a3","DOIUrl":null,"url":null,"abstract":"$\\def\\T{\\mathbb{T}}\\def\\CPV{\\mathbb{C}P(V)}$ We prove a splitting result between the algebraic models for rational $\\T^2$- and $\\T$-equivariant elliptic cohomology, where $\\T$ is the circle group and $\\T^2$ is the $2$-torus. As an application we compute rational $\\T$-equivariant elliptic cohomology of $\\CPV$: the $\\T$-space of complex lines for a finite dimensional complex $\\T$-representation $V$. This is achieved by reducing the computation of $\\T$-elliptic cohomology of $\\CPV$ to the computation of $\\T^2$-elliptic cohomology of certain spheres of complex representations.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"279 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational circle-equivariant elliptic cohomology of CP(V)\",\"authors\":\"Matteo Barucco\",\"doi\":\"10.4310/hha.2024.v26.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\T{\\\\mathbb{T}}\\\\def\\\\CPV{\\\\mathbb{C}P(V)}$ We prove a splitting result between the algebraic models for rational $\\\\T^2$- and $\\\\T$-equivariant elliptic cohomology, where $\\\\T$ is the circle group and $\\\\T^2$ is the $2$-torus. As an application we compute rational $\\\\T$-equivariant elliptic cohomology of $\\\\CPV$: the $\\\\T$-space of complex lines for a finite dimensional complex $\\\\T$-representation $V$. This is achieved by reducing the computation of $\\\\T$-elliptic cohomology of $\\\\CPV$ to the computation of $\\\\T^2$-elliptic cohomology of certain spheres of complex representations.\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":\"279 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n2.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

$def\T\{mathbb{T}}\def\CPV{\mathbb{C}P(V)}$ 我们证明了理性 $\T^2$- 和 $\T$-equivariant elliptic cohomology 的代数模型之间的分裂结果,其中 $\T$ 是圆组,$\T^2$ 是 2$-torus。作为应用,我们计算了$\CPV$的有理$\T$-后向椭圆同调:有限维复数$\T$-表示$V$的复线的$\T$-空间。这是通过将 $\CPV$ 的 $\T$-elliptic cohomology 计算简化为计算复数表示的某些球的 $\T^2$-elliptic cohomology 来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational circle-equivariant elliptic cohomology of CP(V)
$\def\T{\mathbb{T}}\def\CPV{\mathbb{C}P(V)}$ We prove a splitting result between the algebraic models for rational $\T^2$- and $\T$-equivariant elliptic cohomology, where $\T$ is the circle group and $\T^2$ is the $2$-torus. As an application we compute rational $\T$-equivariant elliptic cohomology of $\CPV$: the $\T$-space of complex lines for a finite dimensional complex $\T$-representation $V$. This is achieved by reducing the computation of $\T$-elliptic cohomology of $\CPV$ to the computation of $\T^2$-elliptic cohomology of certain spheres of complex representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信