相间多分散聚合物分馏

J. Pedro de Souza, William M. Jacobs, Howard A. Stone
{"title":"相间多分散聚合物分馏","authors":"J. Pedro de Souza, William M. Jacobs, Howard A. Stone","doi":"arxiv-2409.09229","DOIUrl":null,"url":null,"abstract":"Polymer mixtures fractionate between phases depending on their molecular\nweight. Consequently, by varying solvent conditions, a polydisperse polymer\nsample can be separated between phases so as to achieve a particular molecular\nweight distribution in each phase. In principle, predictive physics-based\ntheories can help guide separation design and interpret experimental\nfractionation measurements. Even so, applying the standard Flory-Huggins model\ncan present a computational challenge for mixtures with many polymeric\ncomponents of different length, particularly for scarce components at the tails\nof a distribution. Here, we apply our recently-derived exact analytical\nsolution of multi-component Flory-Huggins theory for polydisperse polymers to\nunderstand the principles of polymer fractionation for common molecular weight\ndistributions. Our method reveals that polymer fractionation is highly\nsensitive to the shape, and in particular the tails, of this distribution. Our\nresults highlight the need for considering the full molecular weight\ndistribution in phase coexistence calculations.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polydisperse polymer fractionation between phases\",\"authors\":\"J. Pedro de Souza, William M. Jacobs, Howard A. Stone\",\"doi\":\"arxiv-2409.09229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer mixtures fractionate between phases depending on their molecular\\nweight. Consequently, by varying solvent conditions, a polydisperse polymer\\nsample can be separated between phases so as to achieve a particular molecular\\nweight distribution in each phase. In principle, predictive physics-based\\ntheories can help guide separation design and interpret experimental\\nfractionation measurements. Even so, applying the standard Flory-Huggins model\\ncan present a computational challenge for mixtures with many polymeric\\ncomponents of different length, particularly for scarce components at the tails\\nof a distribution. Here, we apply our recently-derived exact analytical\\nsolution of multi-component Flory-Huggins theory for polydisperse polymers to\\nunderstand the principles of polymer fractionation for common molecular weight\\ndistributions. Our method reveals that polymer fractionation is highly\\nsensitive to the shape, and in particular the tails, of this distribution. Our\\nresults highlight the need for considering the full molecular weight\\ndistribution in phase coexistence calculations.\",\"PeriodicalId\":501146,\"journal\":{\"name\":\"arXiv - PHYS - Soft Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物混合物可根据其分子量在各相间进行分馏。因此,通过改变溶剂条件,可以在不同相之间分离多分散聚合物样品,从而在每一相中实现特定的分子量分布。原则上,基于物理学的预测理论有助于指导分离设计和解释实验分馏测量结果。即便如此,应用标准的 Flory-Huggins 模型也会给具有多种不同长度聚合物成分的混合物带来计算上的挑战,尤其是对于分布尾部的稀缺成分。在此,我们应用最近获得的多组分 Flory-Huggins 理论对多分散聚合物的精确分析解决方法,来理解常见分子量分布的聚合物分馏原理。我们的方法揭示了聚合物分馏对分布形状,尤其是分布尾部的高度敏感性。我们的结果凸显了在相共存计算中考虑全部分子量分布的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polydisperse polymer fractionation between phases
Polymer mixtures fractionate between phases depending on their molecular weight. Consequently, by varying solvent conditions, a polydisperse polymer sample can be separated between phases so as to achieve a particular molecular weight distribution in each phase. In principle, predictive physics-based theories can help guide separation design and interpret experimental fractionation measurements. Even so, applying the standard Flory-Huggins model can present a computational challenge for mixtures with many polymeric components of different length, particularly for scarce components at the tails of a distribution. Here, we apply our recently-derived exact analytical solution of multi-component Flory-Huggins theory for polydisperse polymers to understand the principles of polymer fractionation for common molecular weight distributions. Our method reveals that polymer fractionation is highly sensitive to the shape, and in particular the tails, of this distribution. Our results highlight the need for considering the full molecular weight distribution in phase coexistence calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信