指数敏感晶格中伪谱的缩放

Ioannis Kiorpelidis, Konstantinos G. Makris
{"title":"指数敏感晶格中伪谱的缩放","authors":"Ioannis Kiorpelidis, Konstantinos G. Makris","doi":"arxiv-2409.12036","DOIUrl":null,"url":null,"abstract":"One of the important features of non-Hermitian Hamiltonians is the existence\nof a unique type of singularities, the so-called exceptional points. When the\ncorresponding systems operate around such singularities, they exhibit\nultrasensitive behavior that has no analog in conservative systems. An\nalternative way to realize such ultra-sensitivity relies on asymmetric\ncouplings. Here we provide a comprehensive analysis based on pseudospectra,\nthat shows the origin of exponential sensitivity, without relying on\ntopological zero modes or the localization of all eigenstates (skin effect),\nbut on the underlying extreme non-normality of the problem. In particular, we\nconsider four different type of lattices (Hatano-Nelson, Sylvester-Kac, NH-SSH\nand NH-Random lattice) and identify the conditions for exponential sensitivity\nas a function of the lattice size. Complex and structured pseudospectra reveal\nthe signatures of exponential sensitivity both on the eigenvalue spectra and on\nthe underlying dynamics. Our study, may open new directions on studies related\nto the exploitation of non-normality for constructing ultra-sensitive systems\nthat do not rely on the existence of EPs.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling of pseudospectra in exponentially sensitive lattices\",\"authors\":\"Ioannis Kiorpelidis, Konstantinos G. Makris\",\"doi\":\"arxiv-2409.12036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the important features of non-Hermitian Hamiltonians is the existence\\nof a unique type of singularities, the so-called exceptional points. When the\\ncorresponding systems operate around such singularities, they exhibit\\nultrasensitive behavior that has no analog in conservative systems. An\\nalternative way to realize such ultra-sensitivity relies on asymmetric\\ncouplings. Here we provide a comprehensive analysis based on pseudospectra,\\nthat shows the origin of exponential sensitivity, without relying on\\ntopological zero modes or the localization of all eigenstates (skin effect),\\nbut on the underlying extreme non-normality of the problem. In particular, we\\nconsider four different type of lattices (Hatano-Nelson, Sylvester-Kac, NH-SSH\\nand NH-Random lattice) and identify the conditions for exponential sensitivity\\nas a function of the lattice size. Complex and structured pseudospectra reveal\\nthe signatures of exponential sensitivity both on the eigenvalue spectra and on\\nthe underlying dynamics. Our study, may open new directions on studies related\\nto the exploitation of non-normality for constructing ultra-sensitive systems\\nthat do not rely on the existence of EPs.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非赫米提汉密尔顿的一个重要特征是存在一种独特的奇点,即所谓的例外点。当相应的系统在这种奇点附近运行时,它们会表现出超灵敏的行为,而这种行为在保守系统中是没有类似之处的。实现这种超灵敏性的另一种方法是非对称耦合。在此,我们提供了基于伪谱的全面分析,它显示了指数灵敏度的起源,而不是依赖于拓扑零模或所有特征态的局部化(趋肤效应),而是依赖于问题的基本极端非正态性。我们特别考虑了四种不同类型的晶格(Hatano-Nelson 晶格、Sylvester-Kac 晶格、NH-SSH 晶格和 NH-Random 晶格),并确定了指数灵敏度作为晶格大小函数的条件。复杂和结构化的伪谱揭示了指数敏感性在特征值谱和底层动力学上的特征。我们的研究可能会为利用非正态性构建不依赖于指数敏感性存在的超敏感系统的相关研究开辟新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling of pseudospectra in exponentially sensitive lattices
One of the important features of non-Hermitian Hamiltonians is the existence of a unique type of singularities, the so-called exceptional points. When the corresponding systems operate around such singularities, they exhibit ultrasensitive behavior that has no analog in conservative systems. An alternative way to realize such ultra-sensitivity relies on asymmetric couplings. Here we provide a comprehensive analysis based on pseudospectra, that shows the origin of exponential sensitivity, without relying on topological zero modes or the localization of all eigenstates (skin effect), but on the underlying extreme non-normality of the problem. In particular, we consider four different type of lattices (Hatano-Nelson, Sylvester-Kac, NH-SSH and NH-Random lattice) and identify the conditions for exponential sensitivity as a function of the lattice size. Complex and structured pseudospectra reveal the signatures of exponential sensitivity both on the eigenvalue spectra and on the underlying dynamics. Our study, may open new directions on studies related to the exploitation of non-normality for constructing ultra-sensitive systems that do not rely on the existence of EPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信