费米子在二维消失磁场中的对数增强面积定律

IF 0.8 3区 数学 Q2 MATHEMATICS
Paul Pfeiffer, Wolfgang Spitzer
{"title":"费米子在二维消失磁场中的对数增强面积定律","authors":"Paul Pfeiffer, Wolfgang Spitzer","doi":"10.1007/s00020-024-02778-3","DOIUrl":null,"url":null,"abstract":"<p>We consider fermionic ground states of the Landau Hamiltonian, <span>\\(H_B\\)</span>, in a constant magnetic field of strength <span>\\(B&gt;0\\)</span> in <span>\\({\\mathbb {R}}^2\\)</span> at some fixed Fermi energy <span>\\(\\mu &gt;0\\)</span>, described by the Fermi projection <span>\\(P_B:=1(H_B\\le \\mu )\\)</span>. For some fixed bounded domain <span>\\(\\Lambda \\subset {\\mathbb {R}}^2\\)</span> with boundary set <span>\\(\\partial \\Lambda \\)</span> and an <span>\\(L&gt;0\\)</span> we restrict these ground states spatially to the scaled domain <span>\\(L \\Lambda \\)</span> and denote the corresponding localised Fermi projection by <span>\\(P_B(L\\Lambda )\\)</span>. Then we study the scaling of the Hilbert-space trace, <span>\\(\\textrm{tr} f(P_B(L\\Lambda ))\\)</span>, for polynomials <i>f</i> with <span>\\(f(0)=f(1)=0\\)</span> of these localised ground states in the joint limit <span>\\(L\\rightarrow \\infty \\)</span> and <span>\\(B\\rightarrow 0\\)</span>. We obtain to leading order logarithmically enhanced area-laws depending on the size of <i>LB</i>. Roughly speaking, if 1/<i>B</i> tends to infinity faster than <i>L</i>, then we obtain the known enhanced area-law (by the Widom–Sobolev formula) of the form <span>\\(L \\ln (L) a(f,\\mu ) |\\partial \\Lambda |\\)</span> as <span>\\(L\\rightarrow \\infty \\)</span> for the (two-dimensional) Laplacian with Fermi projection <span>\\(1(H_0\\le \\mu )\\)</span>. On the other hand, if <i>L</i> tends to infinity faster than 1/<i>B</i>, then we get an area law with an <span>\\(L \\ln (\\mu /B) a(f,\\mu ) |\\partial \\Lambda |\\)</span> asymptotic expansion as <span>\\(B\\rightarrow 0\\)</span>. The numerical coefficient <span>\\(a(f,\\mu )\\)</span> in both cases is the same and depends solely on the function <i>f</i> and on <span>\\(\\mu \\)</span>. The asymptotic result in the latter case is based upon the recent joint work of Leschke, Sobolev and the second named author [7] for fixed <i>B</i>, a proof of the sine-kernel asymptotics on a global scale, and on the enhanced area-law in dimension one by Landau and Widom. In the special but important case of a quadratic function <i>f</i> we are able to cover the full range of parameters <i>B</i> and <i>L</i>. In general, we have a smaller region of parameters (<i>B</i>, <i>L</i>) where we can prove the two-scale asymptotic expansion <span>\\(\\textrm{tr} f(P_B(L\\Lambda ))\\)</span> as <span>\\(L\\rightarrow \\infty \\)</span> and <span>\\(B\\rightarrow 0\\)</span>.\n</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"13 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmically Enhanced Area-Laws for Fermions in Vanishing Magnetic Fields in Dimension Two\",\"authors\":\"Paul Pfeiffer, Wolfgang Spitzer\",\"doi\":\"10.1007/s00020-024-02778-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider fermionic ground states of the Landau Hamiltonian, <span>\\\\(H_B\\\\)</span>, in a constant magnetic field of strength <span>\\\\(B&gt;0\\\\)</span> in <span>\\\\({\\\\mathbb {R}}^2\\\\)</span> at some fixed Fermi energy <span>\\\\(\\\\mu &gt;0\\\\)</span>, described by the Fermi projection <span>\\\\(P_B:=1(H_B\\\\le \\\\mu )\\\\)</span>. For some fixed bounded domain <span>\\\\(\\\\Lambda \\\\subset {\\\\mathbb {R}}^2\\\\)</span> with boundary set <span>\\\\(\\\\partial \\\\Lambda \\\\)</span> and an <span>\\\\(L&gt;0\\\\)</span> we restrict these ground states spatially to the scaled domain <span>\\\\(L \\\\Lambda \\\\)</span> and denote the corresponding localised Fermi projection by <span>\\\\(P_B(L\\\\Lambda )\\\\)</span>. Then we study the scaling of the Hilbert-space trace, <span>\\\\(\\\\textrm{tr} f(P_B(L\\\\Lambda ))\\\\)</span>, for polynomials <i>f</i> with <span>\\\\(f(0)=f(1)=0\\\\)</span> of these localised ground states in the joint limit <span>\\\\(L\\\\rightarrow \\\\infty \\\\)</span> and <span>\\\\(B\\\\rightarrow 0\\\\)</span>. We obtain to leading order logarithmically enhanced area-laws depending on the size of <i>LB</i>. Roughly speaking, if 1/<i>B</i> tends to infinity faster than <i>L</i>, then we obtain the known enhanced area-law (by the Widom–Sobolev formula) of the form <span>\\\\(L \\\\ln (L) a(f,\\\\mu ) |\\\\partial \\\\Lambda |\\\\)</span> as <span>\\\\(L\\\\rightarrow \\\\infty \\\\)</span> for the (two-dimensional) Laplacian with Fermi projection <span>\\\\(1(H_0\\\\le \\\\mu )\\\\)</span>. On the other hand, if <i>L</i> tends to infinity faster than 1/<i>B</i>, then we get an area law with an <span>\\\\(L \\\\ln (\\\\mu /B) a(f,\\\\mu ) |\\\\partial \\\\Lambda |\\\\)</span> asymptotic expansion as <span>\\\\(B\\\\rightarrow 0\\\\)</span>. The numerical coefficient <span>\\\\(a(f,\\\\mu )\\\\)</span> in both cases is the same and depends solely on the function <i>f</i> and on <span>\\\\(\\\\mu \\\\)</span>. The asymptotic result in the latter case is based upon the recent joint work of Leschke, Sobolev and the second named author [7] for fixed <i>B</i>, a proof of the sine-kernel asymptotics on a global scale, and on the enhanced area-law in dimension one by Landau and Widom. In the special but important case of a quadratic function <i>f</i> we are able to cover the full range of parameters <i>B</i> and <i>L</i>. In general, we have a smaller region of parameters (<i>B</i>, <i>L</i>) where we can prove the two-scale asymptotic expansion <span>\\\\(\\\\textrm{tr} f(P_B(L\\\\Lambda ))\\\\)</span> as <span>\\\\(L\\\\rightarrow \\\\infty \\\\)</span> and <span>\\\\(B\\\\rightarrow 0\\\\)</span>.\\n</p>\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02778-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02778-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在某个固定费米能\(\mu >0\)下,在({\mathbb {R}}^2\)中强度为\(B>0\)的恒定磁场中的朗道哈密顿的费米基态,由费米投影\(P_B:=1(H_B\le \mu )\)描述。对于一些固定的有界域(Lambda子集{\mathbb{R}}^2),其边界集为(Partial \Lambda \)和一个(L>0\),我们将这些基态在空间上限制在缩放域(L \Lambda \)中,并用(P_B(L \Lambda )\)表示相应的局部费米投影。然后我们研究这些局部化基态的多项式f在联合极限(L)和(B)中的希尔伯特空间痕量(textrm{tr} f(P_B(L\Lambda ))\) 的缩放。根据LB的大小,我们可以得到前导阶对数增强的区域律。粗略地说,如果1/B比L更快地趋向于无穷大,那么我们就会得到已知的增强面积律(通过维多姆-索博列夫公式),其形式为\(L \ln (L) a(f,\mu ) |\partial \Lambda |\),即\(L\rightarrow \infty \)为具有费米投影的(二维)拉普拉斯函数\(1(H_0\le \mu )\)。另一方面,如果L以快于1/B的速度趋向于无穷大,那么我们就会得到一个面积定律,其\(L \ln (\mu /B) a(f,\mu ) |\partial \Lambda |\)渐近展开为\(B\rightarrow 0\).这两种情况下的数值系数\(a(f,\mu )\)是相同的,并且只取决于函数f和\(\mu \)。后一种情况下的渐近结果是基于莱施克、索博列夫和第二位作者[7]最近针对固定 B 的联合工作,即对正弦核渐近的全局证明,以及兰道和维多姆在维度一上的增强面积律。一般来说,我们有一个更小的参数(B,L)区域,在这里我们可以证明双尺度渐近展开 \(\textrm{tr} f(P_B(L\Lambda ))\) 为 \(L\rightarrow \infty \) 和 \(B\rightarrow 0\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Logarithmically Enhanced Area-Laws for Fermions in Vanishing Magnetic Fields in Dimension Two

Logarithmically Enhanced Area-Laws for Fermions in Vanishing Magnetic Fields in Dimension Two

We consider fermionic ground states of the Landau Hamiltonian, \(H_B\), in a constant magnetic field of strength \(B>0\) in \({\mathbb {R}}^2\) at some fixed Fermi energy \(\mu >0\), described by the Fermi projection \(P_B:=1(H_B\le \mu )\). For some fixed bounded domain \(\Lambda \subset {\mathbb {R}}^2\) with boundary set \(\partial \Lambda \) and an \(L>0\) we restrict these ground states spatially to the scaled domain \(L \Lambda \) and denote the corresponding localised Fermi projection by \(P_B(L\Lambda )\). Then we study the scaling of the Hilbert-space trace, \(\textrm{tr} f(P_B(L\Lambda ))\), for polynomials f with \(f(0)=f(1)=0\) of these localised ground states in the joint limit \(L\rightarrow \infty \) and \(B\rightarrow 0\). We obtain to leading order logarithmically enhanced area-laws depending on the size of LB. Roughly speaking, if 1/B tends to infinity faster than L, then we obtain the known enhanced area-law (by the Widom–Sobolev formula) of the form \(L \ln (L) a(f,\mu ) |\partial \Lambda |\) as \(L\rightarrow \infty \) for the (two-dimensional) Laplacian with Fermi projection \(1(H_0\le \mu )\). On the other hand, if L tends to infinity faster than 1/B, then we get an area law with an \(L \ln (\mu /B) a(f,\mu ) |\partial \Lambda |\) asymptotic expansion as \(B\rightarrow 0\). The numerical coefficient \(a(f,\mu )\) in both cases is the same and depends solely on the function f and on \(\mu \). The asymptotic result in the latter case is based upon the recent joint work of Leschke, Sobolev and the second named author [7] for fixed B, a proof of the sine-kernel asymptotics on a global scale, and on the enhanced area-law in dimension one by Landau and Widom. In the special but important case of a quadratic function f we are able to cover the full range of parameters B and L. In general, we have a smaller region of parameters (BL) where we can prove the two-scale asymptotic expansion \(\textrm{tr} f(P_B(L\Lambda ))\) as \(L\rightarrow \infty \) and \(B\rightarrow 0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信