关于平移点的刚性

Dylan Cant, Jakob Hedicke
{"title":"关于平移点的刚性","authors":"Dylan Cant, Jakob Hedicke","doi":"arxiv-2409.08962","DOIUrl":null,"url":null,"abstract":"We show that there exist contact isotopies of the standard contact sphere\nwhose time-1 maps do not have any translated points which are optimally close\nto the identity in the Shelukhin-Hofer distance. This proves the sharpness of a\ntheorem of Shelukhin on the existence of translated points for contact\nisotopies of Liouville fillable contact manifolds with small enough\nShelukhin-Hofer norm.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the rigidity of translated points\",\"authors\":\"Dylan Cant, Jakob Hedicke\",\"doi\":\"arxiv-2409.08962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there exist contact isotopies of the standard contact sphere\\nwhose time-1 maps do not have any translated points which are optimally close\\nto the identity in the Shelukhin-Hofer distance. This proves the sharpness of a\\ntheorem of Shelukhin on the existence of translated points for contact\\nisotopies of Liouville fillable contact manifolds with small enough\\nShelukhin-Hofer norm.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,存在标准接触球的接触异托邦,其时间-1映射不存在任何平移点,而这些点在谢卢欣-霍弗距离上最接近同一性。这证明了谢卢欣关于具有足够小的谢卢欣-霍弗规范的刘维尔可填充接触流形的接触异顶存在平移点的定理的尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the rigidity of translated points
We show that there exist contact isotopies of the standard contact sphere whose time-1 maps do not have any translated points which are optimally close to the identity in the Shelukhin-Hofer distance. This proves the sharpness of a theorem of Shelukhin on the existence of translated points for contact isotopies of Liouville fillable contact manifolds with small enough Shelukhin-Hofer norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信