{"title":"关于平移点的刚性","authors":"Dylan Cant, Jakob Hedicke","doi":"arxiv-2409.08962","DOIUrl":null,"url":null,"abstract":"We show that there exist contact isotopies of the standard contact sphere\nwhose time-1 maps do not have any translated points which are optimally close\nto the identity in the Shelukhin-Hofer distance. This proves the sharpness of a\ntheorem of Shelukhin on the existence of translated points for contact\nisotopies of Liouville fillable contact manifolds with small enough\nShelukhin-Hofer norm.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the rigidity of translated points\",\"authors\":\"Dylan Cant, Jakob Hedicke\",\"doi\":\"arxiv-2409.08962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there exist contact isotopies of the standard contact sphere\\nwhose time-1 maps do not have any translated points which are optimally close\\nto the identity in the Shelukhin-Hofer distance. This proves the sharpness of a\\ntheorem of Shelukhin on the existence of translated points for contact\\nisotopies of Liouville fillable contact manifolds with small enough\\nShelukhin-Hofer norm.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that there exist contact isotopies of the standard contact sphere
whose time-1 maps do not have any translated points which are optimally close
to the identity in the Shelukhin-Hofer distance. This proves the sharpness of a
theorem of Shelukhin on the existence of translated points for contact
isotopies of Liouville fillable contact manifolds with small enough
Shelukhin-Hofer norm.