双拉格朗日格拉斯曼几何学

I. K. Kozlov
{"title":"双拉格朗日格拉斯曼几何学","authors":"I. K. Kozlov","doi":"arxiv-2409.09855","DOIUrl":null,"url":null,"abstract":"This paper explores the structure of bi-Lagrangian Grassmanians for pencils\nof $2$-forms on real or complex vector spaces. We reduce the analysis to the\npencils whose Jordan-Kronecker Canonical Form consists of Jordan blocks with\nthe same eigenvalue. We demonstrate that this is equivalent to studying\nLagrangian subspaces invariant under a nilpotent self-adjoint operator. We\ncalculate the dimension of bi-Lagrangian Grassmanians and describe their open\norbit under the automorphism group. We completely describe the automorphism\norbits in the following three cases: for one Jordan block, for sums of equal\nJordan blocks and for a sum of two distinct Jordan blocks.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of bi-Lagrangian Grassmannian\",\"authors\":\"I. K. Kozlov\",\"doi\":\"arxiv-2409.09855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the structure of bi-Lagrangian Grassmanians for pencils\\nof $2$-forms on real or complex vector spaces. We reduce the analysis to the\\npencils whose Jordan-Kronecker Canonical Form consists of Jordan blocks with\\nthe same eigenvalue. We demonstrate that this is equivalent to studying\\nLagrangian subspaces invariant under a nilpotent self-adjoint operator. We\\ncalculate the dimension of bi-Lagrangian Grassmanians and describe their open\\norbit under the automorphism group. We completely describe the automorphism\\norbits in the following three cases: for one Jordan block, for sums of equal\\nJordan blocks and for a sum of two distinct Jordan blocks.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了实向量空间或复向量空间上 2 美元形式铅笔的双拉格朗日格拉斯曼结构。我们将分析简化为由具有相同特征值的乔丹块组成的乔丹-克朗内克标准形式(Jordan-Kronecker Canonical Form)的铅笔。我们证明,这等同于研究在零势自相加算子作用下不变的拉格朗日子空间。我们计算了双拉格朗日格拉斯曼的维数,并描述了它们在自变形群下的开位。我们完整地描述了以下三种情况下的自形位:一个乔丹块、相等乔丹块之和以及两个不同乔丹块之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of bi-Lagrangian Grassmannian
This paper explores the structure of bi-Lagrangian Grassmanians for pencils of $2$-forms on real or complex vector spaces. We reduce the analysis to the pencils whose Jordan-Kronecker Canonical Form consists of Jordan blocks with the same eigenvalue. We demonstrate that this is equivalent to studying Lagrangian subspaces invariant under a nilpotent self-adjoint operator. We calculate the dimension of bi-Lagrangian Grassmanians and describe their open orbit under the automorphism group. We completely describe the automorphism orbits in the following three cases: for one Jordan block, for sums of equal Jordan blocks and for a sum of two distinct Jordan blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信