$\mathbb{C}^n$的凯勒紧凑化与里布动力学

Chi Li, Zhengyi Zhou
{"title":"$\\mathbb{C}^n$的凯勒紧凑化与里布动力学","authors":"Chi Li, Zhengyi Zhou","doi":"arxiv-2409.10275","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth complex manifold. Assume that $Y\\subset X$ is a\nK\\\"{a}hler submanifold such that $X\\setminus Y$ is biholomorphic to\n$\\mathbb{C}^n$. We prove that $(X, Y)$ is biholomorphic to the standard example\n$(\\mathbb{P}^n, \\mathbb{P}^{n-1})$. We then study certain K\\\"{a}hler orbifold\ncompactifications of $\\mathbb{C}^n$ and prove that on $\\mathbb{C}^3$ the flat\nmetric is the only asymptotically conical Ricci-flat K\\\"{a}hler metric whose\nmetric cone at infinity has a smooth link. As a key technical ingredient, a new\nformula for minimal discrepancy of isolated Fano cone singularities in terms of\ngeneralized Conley-Zehnder indices in symplectic geometry is derived.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kähler compactification of $\\\\mathbb{C}^n$ and Reeb dynamics\",\"authors\":\"Chi Li, Zhengyi Zhou\",\"doi\":\"arxiv-2409.10275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth complex manifold. Assume that $Y\\\\subset X$ is a\\nK\\\\\\\"{a}hler submanifold such that $X\\\\setminus Y$ is biholomorphic to\\n$\\\\mathbb{C}^n$. We prove that $(X, Y)$ is biholomorphic to the standard example\\n$(\\\\mathbb{P}^n, \\\\mathbb{P}^{n-1})$. We then study certain K\\\\\\\"{a}hler orbifold\\ncompactifications of $\\\\mathbb{C}^n$ and prove that on $\\\\mathbb{C}^3$ the flat\\nmetric is the only asymptotically conical Ricci-flat K\\\\\\\"{a}hler metric whose\\nmetric cone at infinity has a smooth link. As a key technical ingredient, a new\\nformula for minimal discrepancy of isolated Fano cone singularities in terms of\\ngeneralized Conley-Zehnder indices in symplectic geometry is derived.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $X$ 是一个光滑的复流形。假设 $Y/subset X$ 是一个 K\"{a}hler 子流形,使得 $X/setminus Y$ 与 $\mathbb{C}^n$ 是双全向的。我们证明$(X, Y)$ 与标准范例$(\mathbb{P}^n, \mathbb{P}^{n-1})$是双全同的。然后,我们研究了 $\mathbb{C}^n$ 的某些 K\"{a}hler orbifoldcompactifications,并证明在 $\mathbb{C}^3$ 上,平公设是唯一渐近圆锥形的 Ricci-flat K\"{a}hler 公设,它的公设锥在无穷远处有一个光滑链接。作为一个关键的技术成分,以交映几何中的广义康利-泽恩德指数推导出了孤立法诺锥奇点最小差异的新公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kähler compactification of $\mathbb{C}^n$ and Reeb dynamics
Let $X$ be a smooth complex manifold. Assume that $Y\subset X$ is a K\"{a}hler submanifold such that $X\setminus Y$ is biholomorphic to $\mathbb{C}^n$. We prove that $(X, Y)$ is biholomorphic to the standard example $(\mathbb{P}^n, \mathbb{P}^{n-1})$. We then study certain K\"{a}hler orbifold compactifications of $\mathbb{C}^n$ and prove that on $\mathbb{C}^3$ the flat metric is the only asymptotically conical Ricci-flat K\"{a}hler metric whose metric cone at infinity has a smooth link. As a key technical ingredient, a new formula for minimal discrepancy of isolated Fano cone singularities in terms of generalized Conley-Zehnder indices in symplectic geometry is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信