{"title":"$\\mathbb{C}^n$的凯勒紧凑化与里布动力学","authors":"Chi Li, Zhengyi Zhou","doi":"arxiv-2409.10275","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth complex manifold. Assume that $Y\\subset X$ is a\nK\\\"{a}hler submanifold such that $X\\setminus Y$ is biholomorphic to\n$\\mathbb{C}^n$. We prove that $(X, Y)$ is biholomorphic to the standard example\n$(\\mathbb{P}^n, \\mathbb{P}^{n-1})$. We then study certain K\\\"{a}hler orbifold\ncompactifications of $\\mathbb{C}^n$ and prove that on $\\mathbb{C}^3$ the flat\nmetric is the only asymptotically conical Ricci-flat K\\\"{a}hler metric whose\nmetric cone at infinity has a smooth link. As a key technical ingredient, a new\nformula for minimal discrepancy of isolated Fano cone singularities in terms of\ngeneralized Conley-Zehnder indices in symplectic geometry is derived.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kähler compactification of $\\\\mathbb{C}^n$ and Reeb dynamics\",\"authors\":\"Chi Li, Zhengyi Zhou\",\"doi\":\"arxiv-2409.10275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth complex manifold. Assume that $Y\\\\subset X$ is a\\nK\\\\\\\"{a}hler submanifold such that $X\\\\setminus Y$ is biholomorphic to\\n$\\\\mathbb{C}^n$. We prove that $(X, Y)$ is biholomorphic to the standard example\\n$(\\\\mathbb{P}^n, \\\\mathbb{P}^{n-1})$. We then study certain K\\\\\\\"{a}hler orbifold\\ncompactifications of $\\\\mathbb{C}^n$ and prove that on $\\\\mathbb{C}^3$ the flat\\nmetric is the only asymptotically conical Ricci-flat K\\\\\\\"{a}hler metric whose\\nmetric cone at infinity has a smooth link. As a key technical ingredient, a new\\nformula for minimal discrepancy of isolated Fano cone singularities in terms of\\ngeneralized Conley-Zehnder indices in symplectic geometry is derived.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kähler compactification of $\mathbb{C}^n$ and Reeb dynamics
Let $X$ be a smooth complex manifold. Assume that $Y\subset X$ is a
K\"{a}hler submanifold such that $X\setminus Y$ is biholomorphic to
$\mathbb{C}^n$. We prove that $(X, Y)$ is biholomorphic to the standard example
$(\mathbb{P}^n, \mathbb{P}^{n-1})$. We then study certain K\"{a}hler orbifold
compactifications of $\mathbb{C}^n$ and prove that on $\mathbb{C}^3$ the flat
metric is the only asymptotically conical Ricci-flat K\"{a}hler metric whose
metric cone at infinity has a smooth link. As a key technical ingredient, a new
formula for minimal discrepancy of isolated Fano cone singularities in terms of
generalized Conley-Zehnder indices in symplectic geometry is derived.