{"title":"隐形眼镜在镜片空间内不会产生挤压","authors":"Pierre-Alexandre Arlove","doi":"arxiv-2409.10334","DOIUrl":null,"url":null,"abstract":"We describe some contact non-squeezing phenomena in lens spaces by defining\nand computing a contact capacity. This contact capacity comes from the spectral\nselectors constructed by Allais, Sandon and the author by the means of\ngenerating functions and Givental's non-linear Maslov index. We also discuss a\npotential generalization of these non-squeezing phenomena for orderable closed\nprequantizations.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact non-squeezing in lens spaces\",\"authors\":\"Pierre-Alexandre Arlove\",\"doi\":\"arxiv-2409.10334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe some contact non-squeezing phenomena in lens spaces by defining\\nand computing a contact capacity. This contact capacity comes from the spectral\\nselectors constructed by Allais, Sandon and the author by the means of\\ngenerating functions and Givental's non-linear Maslov index. We also discuss a\\npotential generalization of these non-squeezing phenomena for orderable closed\\nprequantizations.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe some contact non-squeezing phenomena in lens spaces by defining
and computing a contact capacity. This contact capacity comes from the spectral
selectors constructed by Allais, Sandon and the author by the means of
generating functions and Givental's non-linear Maslov index. We also discuss a
potential generalization of these non-squeezing phenomena for orderable closed
prequantizations.