正利玛窦曲率的 3 球体中存在 5 个最小转矩

Adrian Chun-Pong Chu, Yangyang Li
{"title":"正利玛窦曲率的 3 球体中存在 5 个最小转矩","authors":"Adrian Chun-Pong Chu, Yangyang Li","doi":"arxiv-2409.09315","DOIUrl":null,"url":null,"abstract":"In 1989, B. White conjectured that every Riemannian 3-sphere has at least 5\nembedded minimal tori. We confirm this conjecture for 3-spheres of positive\nRicci curvature. While our proof uses min-max theory, the underlying heuristics\nare largely inspired by mean curvature flow.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of 5 minimal tori in 3-spheres of positive Ricci curvature\",\"authors\":\"Adrian Chun-Pong Chu, Yangyang Li\",\"doi\":\"arxiv-2409.09315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1989, B. White conjectured that every Riemannian 3-sphere has at least 5\\nembedded minimal tori. We confirm this conjecture for 3-spheres of positive\\nRicci curvature. While our proof uses min-max theory, the underlying heuristics\\nare largely inspired by mean curvature flow.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1989 年,B. 怀特猜想每个黎曼 3 球至少有 5 个嵌入的最小环。我们对具有正里奇曲率的 3 球体证实了这一猜想。虽然我们的证明使用了最小最大理论,但其基本启发式主要来自平均曲率流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of 5 minimal tori in 3-spheres of positive Ricci curvature
In 1989, B. White conjectured that every Riemannian 3-sphere has at least 5 embedded minimal tori. We confirm this conjecture for 3-spheres of positive Ricci curvature. While our proof uses min-max theory, the underlying heuristics are largely inspired by mean curvature flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信