$ \mathbb{Z} $ 覆盖中的角循环轨道闭合分类

James Farre, Or Landesberg, Yair Minsky
{"title":"$ \\mathbb{Z} $ 覆盖中的角循环轨道闭合分类","authors":"James Farre, Or Landesberg, Yair Minsky","doi":"arxiv-2409.10004","DOIUrl":null,"url":null,"abstract":"We fully describe all horocycle orbit closures in $ \\mathbb{Z} $-covers of\ncompact hyperbolic surfaces. Our results rely on a careful analysis of the\nefficiency of all distance minimizing geodesic rays in the cover. As a\ncorollary we obtain in this setting that all non-maximal horocycle orbit\nclosures, while fractal, have integer Hausdorff dimension.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of horocycle orbit closures in $ \\\\mathbb{Z} $-covers\",\"authors\":\"James Farre, Or Landesberg, Yair Minsky\",\"doi\":\"arxiv-2409.10004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fully describe all horocycle orbit closures in $ \\\\mathbb{Z} $-covers of\\ncompact hyperbolic surfaces. Our results rely on a careful analysis of the\\nefficiency of all distance minimizing geodesic rays in the cover. As a\\ncorollary we obtain in this setting that all non-maximal horocycle orbit\\nclosures, while fractal, have integer Hausdorff dimension.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们完全描述了紧凑双曲面的$ \mathbb{Z} $覆盖中的所有角循环轨道闭合。我们的结果依赖于对覆盖中所有距离最小化大地射线效率的仔细分析。作为必然结果,我们得到了在这种情况下,所有非最大角循环轨道闭合虽然都是分形的,但其豪斯多夫维度都是整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of horocycle orbit closures in $ \mathbb{Z} $-covers
We fully describe all horocycle orbit closures in $ \mathbb{Z} $-covers of compact hyperbolic surfaces. Our results rely on a careful analysis of the efficiency of all distance minimizing geodesic rays in the cover. As a corollary we obtain in this setting that all non-maximal horocycle orbit closures, while fractal, have integer Hausdorff dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信