{"title":"$ \\mathbb{Z} $ 覆盖中的角循环轨道闭合分类","authors":"James Farre, Or Landesberg, Yair Minsky","doi":"arxiv-2409.10004","DOIUrl":null,"url":null,"abstract":"We fully describe all horocycle orbit closures in $ \\mathbb{Z} $-covers of\ncompact hyperbolic surfaces. Our results rely on a careful analysis of the\nefficiency of all distance minimizing geodesic rays in the cover. As a\ncorollary we obtain in this setting that all non-maximal horocycle orbit\nclosures, while fractal, have integer Hausdorff dimension.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of horocycle orbit closures in $ \\\\mathbb{Z} $-covers\",\"authors\":\"James Farre, Or Landesberg, Yair Minsky\",\"doi\":\"arxiv-2409.10004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fully describe all horocycle orbit closures in $ \\\\mathbb{Z} $-covers of\\ncompact hyperbolic surfaces. Our results rely on a careful analysis of the\\nefficiency of all distance minimizing geodesic rays in the cover. As a\\ncorollary we obtain in this setting that all non-maximal horocycle orbit\\nclosures, while fractal, have integer Hausdorff dimension.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of horocycle orbit closures in $ \mathbb{Z} $-covers
We fully describe all horocycle orbit closures in $ \mathbb{Z} $-covers of
compact hyperbolic surfaces. Our results rely on a careful analysis of the
efficiency of all distance minimizing geodesic rays in the cover. As a
corollary we obtain in this setting that all non-maximal horocycle orbit
closures, while fractal, have integer Hausdorff dimension.