寻求交替手术

Kenneth L. Baker, Marc Kegel, Duncan McCoy
{"title":"寻求交替手术","authors":"Kenneth L. Baker, Marc Kegel, Duncan McCoy","doi":"arxiv-2409.09842","DOIUrl":null,"url":null,"abstract":"Surgery on a knot in $S^3$ is said to be an alternating surgery if it yields\nthe double branched cover of an alternating link. The main theoretical\ncontribution is to show that the set of alternating surgery slopes is\nalgorithmically computable and to establish several structural results.\nFurthermore, we calculate the set of alternating surgery slopes for many\nexamples of knots, including all hyperbolic knots in the SnapPy census. These\nexamples exhibit several interesting phenomena including strongly invertible\nknots with a unique alternating surgery and asymmetric knots with two\nalternating surgery slopes. We also establish upper bounds on the set of\nalternating surgeries, showing that an alternating surgery slope on a\nhyperbolic knot satisfies $|p/q| \\leq 3g(K)+4$. Notably, this bound applies to\nlens space surgeries, thereby strengthening the known genus bounds from the\nconjecture of Goda and Teragaito.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The search for alternating surgeries\",\"authors\":\"Kenneth L. Baker, Marc Kegel, Duncan McCoy\",\"doi\":\"arxiv-2409.09842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surgery on a knot in $S^3$ is said to be an alternating surgery if it yields\\nthe double branched cover of an alternating link. The main theoretical\\ncontribution is to show that the set of alternating surgery slopes is\\nalgorithmically computable and to establish several structural results.\\nFurthermore, we calculate the set of alternating surgery slopes for many\\nexamples of knots, including all hyperbolic knots in the SnapPy census. These\\nexamples exhibit several interesting phenomena including strongly invertible\\nknots with a unique alternating surgery and asymmetric knots with two\\nalternating surgery slopes. We also establish upper bounds on the set of\\nalternating surgeries, showing that an alternating surgery slope on a\\nhyperbolic knot satisfies $|p/q| \\\\leq 3g(K)+4$. Notably, this bound applies to\\nlens space surgeries, thereby strengthening the known genus bounds from the\\nconjecture of Goda and Teragaito.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果对$S^3$中的一个结进行的手术产生了交替链接的双支盖,那么这个结就被称为交替手术。我们的主要理论贡献是证明交替手术斜率集是可以算出的,并建立了几个结构性结果。此外,我们还计算了许多结的交替手术斜率集,包括 SnapPy 普查中的所有双曲结。这些例子展示了几个有趣的现象,包括具有唯一交替手术的强可逆结和具有两个交替手术斜率的不对称结。我们还建立了交替手术集的上限,表明双曲结上的交替手术斜率满足 $|p/q| \leq 3g(K)+4$。值得注意的是,这一约束适用于lens空间手术,从而加强了来自 Goda 和 Teragaito 的猜想的已知种属约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The search for alternating surgeries
Surgery on a knot in $S^3$ is said to be an alternating surgery if it yields the double branched cover of an alternating link. The main theoretical contribution is to show that the set of alternating surgery slopes is algorithmically computable and to establish several structural results. Furthermore, we calculate the set of alternating surgery slopes for many examples of knots, including all hyperbolic knots in the SnapPy census. These examples exhibit several interesting phenomena including strongly invertible knots with a unique alternating surgery and asymmetric knots with two alternating surgery slopes. We also establish upper bounds on the set of alternating surgeries, showing that an alternating surgery slope on a hyperbolic knot satisfies $|p/q| \leq 3g(K)+4$. Notably, this bound applies to lens space surgeries, thereby strengthening the known genus bounds from the conjecture of Goda and Teragaito.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信