增强型汉策定理

Michael H. Freedman
{"title":"增强型汉策定理","authors":"Michael H. Freedman","doi":"arxiv-2409.09983","DOIUrl":null,"url":null,"abstract":"A closed 3-manifold $M$ may be described up to some indeterminacy by a\nHeegaard diagram $\\mathcal{D}$. The question \"Does $M$ smoothly embed in\n$\\mathbb{R}^4$?'' is equivalent to a property of $\\mathcal{D}$ which we call\n$\\textit{doubly unlinked}$ (DU). This perspective leads to an enhancement of\nHantzsche's embedding obstruction.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Hantzsche Theorem\",\"authors\":\"Michael H. Freedman\",\"doi\":\"arxiv-2409.09983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A closed 3-manifold $M$ may be described up to some indeterminacy by a\\nHeegaard diagram $\\\\mathcal{D}$. The question \\\"Does $M$ smoothly embed in\\n$\\\\mathbb{R}^4$?'' is equivalent to a property of $\\\\mathcal{D}$ which we call\\n$\\\\textit{doubly unlinked}$ (DU). This perspective leads to an enhancement of\\nHantzsche's embedding obstruction.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个封闭的3-manifold $M$可以用一个Heegaard图$/mathcal{D}$来描述,直到某些不确定性。$M$是否平滑地嵌入到$mathbb{R}^4$中?"这个问题等价于$mathcal{D}$的一个性质,我们称之为$textit{doubly unlinked}$(DU)。这个观点导致了对汉茨的嵌入障碍的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Hantzsche Theorem
A closed 3-manifold $M$ may be described up to some indeterminacy by a Heegaard diagram $\mathcal{D}$. The question "Does $M$ smoothly embed in $\mathbb{R}^4$?'' is equivalent to a property of $\mathcal{D}$ which we call $\textit{doubly unlinked}$ (DU). This perspective leads to an enhancement of Hantzsche's embedding obstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信