Karl J. McNulty, Shriddha Chaitanya, Swarnava Sanyal, Andres Gil-Molina, Mateus Corato-Zanarella, Yoshitomo Okawachi, Alexander L. Gaeta, Michal Lipson
{"title":"通过双层波导克服氮化硅非线性光子学中的应力限制","authors":"Karl J. McNulty, Shriddha Chaitanya, Swarnava Sanyal, Andres Gil-Molina, Mateus Corato-Zanarella, Yoshitomo Okawachi, Alexander L. Gaeta, Michal Lipson","doi":"arxiv-2409.08358","DOIUrl":null,"url":null,"abstract":"Silicon nitride (SiN) formed via low pressure chemical vapor deposition\n(LPCVD) is an ideal material platform for on-chip nonlinear photonics owing to\nits low propagation loss and competitive nonlinear index. Despite this, LPCVD\nSiN is restricted in its scalability due to the film stress when high\nthicknesses, required for nonlinear dispersion engineering, are deposited. This\nstress in turn leads to film cracking and makes integrating such films in\nsilicon foundries challenging. To overcome this limitation, we propose a\nbilayer waveguide scheme comprised of a thin LPCVD SiN layer underneath a\nlow-stress and low-index PECVD SiN layer. We show group velocity dispersion\ntuning at 1550nm without concern for filmcracking while enabling low loss\nresonators with intrinsic quality factors above 1 million. Finally, we\ndemonstrate a locked, normal dispersion Kerr frequency comb with our bilayer\nwaveguide resonators spanning 120nm in the c-band with an on-chip pump power of\n350mW.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming stress limitations in SiN nonlinear photonics via a bilayer waveguide\",\"authors\":\"Karl J. McNulty, Shriddha Chaitanya, Swarnava Sanyal, Andres Gil-Molina, Mateus Corato-Zanarella, Yoshitomo Okawachi, Alexander L. Gaeta, Michal Lipson\",\"doi\":\"arxiv-2409.08358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon nitride (SiN) formed via low pressure chemical vapor deposition\\n(LPCVD) is an ideal material platform for on-chip nonlinear photonics owing to\\nits low propagation loss and competitive nonlinear index. Despite this, LPCVD\\nSiN is restricted in its scalability due to the film stress when high\\nthicknesses, required for nonlinear dispersion engineering, are deposited. This\\nstress in turn leads to film cracking and makes integrating such films in\\nsilicon foundries challenging. To overcome this limitation, we propose a\\nbilayer waveguide scheme comprised of a thin LPCVD SiN layer underneath a\\nlow-stress and low-index PECVD SiN layer. We show group velocity dispersion\\ntuning at 1550nm without concern for filmcracking while enabling low loss\\nresonators with intrinsic quality factors above 1 million. Finally, we\\ndemonstrate a locked, normal dispersion Kerr frequency comb with our bilayer\\nwaveguide resonators spanning 120nm in the c-band with an on-chip pump power of\\n350mW.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过低压化学气相沉积(LPCVD)形成的氮化硅(SiN)具有低传播损耗和极高的非线性指数,是片上非线性光子学的理想材料平台。尽管如此,由于沉积非线性色散工程所需的高厚度薄膜时会产生薄膜应力,LPCVDSiN 的可扩展性受到了限制。这种应力反过来又会导致薄膜开裂,使得在硅代工厂中集成这种薄膜具有挑战性。为了克服这一限制,我们提出了一种由薄 LPCVD SiN 层和低应力、低指数 PECVD SiN 层组成的分层波导方案。我们展示了 1550nm 波长的群速色散调谐,而无需担心薄膜开裂,同时实现了本征品质因数超过 100 万的低损耗谐振器。最后,我们利用双层波导谐振器在 c 波段 120nm 范围内展示了锁定的正常色散克尔频率梳,片上泵功率为 350mW。
Overcoming stress limitations in SiN nonlinear photonics via a bilayer waveguide
Silicon nitride (SiN) formed via low pressure chemical vapor deposition
(LPCVD) is an ideal material platform for on-chip nonlinear photonics owing to
its low propagation loss and competitive nonlinear index. Despite this, LPCVD
SiN is restricted in its scalability due to the film stress when high
thicknesses, required for nonlinear dispersion engineering, are deposited. This
stress in turn leads to film cracking and makes integrating such films in
silicon foundries challenging. To overcome this limitation, we propose a
bilayer waveguide scheme comprised of a thin LPCVD SiN layer underneath a
low-stress and low-index PECVD SiN layer. We show group velocity dispersion
tuning at 1550nm without concern for filmcracking while enabling low loss
resonators with intrinsic quality factors above 1 million. Finally, we
demonstrate a locked, normal dispersion Kerr frequency comb with our bilayer
waveguide resonators spanning 120nm in the c-band with an on-chip pump power of
350mW.