利用全光学衍射处理器的多路复用元表面进行多任务学习

Sahar Behroozinia, Qing Gu
{"title":"利用全光学衍射处理器的多路复用元表面进行多任务学习","authors":"Sahar Behroozinia, Qing Gu","doi":"arxiv-2409.08423","DOIUrl":null,"url":null,"abstract":"Diffractive Neural Networks (DNNs) leverage the power of light to enhance\ncomputational performance in machine learning, offering a pathway to\nhigh-speed, low-energy, and large-scale neural information processing. However,\nmost existing DNN architectures are optimized for single tasks and thus lack\nthe flexibility required for the simultaneous execution of multiple tasks\nwithin a unified artificial intelligence platform. In this work, we utilize the\npolarization and wavelength degrees of freedom of light to achieve optical\nmulti-task identification using the MNIST, FMNIST, and KMNIST datasets.\nEmploying bilayer cascaded metasurfaces, we construct dual-channel DNNs capable\nof simultaneously classifying two tasks, using polarization and wavelength\nmultiplexing schemes through a meta-atom library. Numerical evaluations\ndemonstrate performance accuracies comparable to those of individually trained\nsingle-channel, single-task DNNs. Extending this approach to three-task\nparallel recognition reveals an expected performance decline yet maintains\nsatisfactory classification accuracies of greater than 80% for all tasks. We\nfurther introduce a novel end-to-end joint optimization framework to redesign\nthe three-task classifier, demonstrating substantial improvements over the\nmeta-atom library design and offering the potential for future multi-channel\nDNN designs. Our study could pave the way for the development of ultrathin,\nhigh-speed, and high-throughput optical neural computing systems.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Multiplexed Metasurfaces for Multi-Task Learning with All-Optical Diffractive Processors\",\"authors\":\"Sahar Behroozinia, Qing Gu\",\"doi\":\"arxiv-2409.08423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffractive Neural Networks (DNNs) leverage the power of light to enhance\\ncomputational performance in machine learning, offering a pathway to\\nhigh-speed, low-energy, and large-scale neural information processing. However,\\nmost existing DNN architectures are optimized for single tasks and thus lack\\nthe flexibility required for the simultaneous execution of multiple tasks\\nwithin a unified artificial intelligence platform. In this work, we utilize the\\npolarization and wavelength degrees of freedom of light to achieve optical\\nmulti-task identification using the MNIST, FMNIST, and KMNIST datasets.\\nEmploying bilayer cascaded metasurfaces, we construct dual-channel DNNs capable\\nof simultaneously classifying two tasks, using polarization and wavelength\\nmultiplexing schemes through a meta-atom library. Numerical evaluations\\ndemonstrate performance accuracies comparable to those of individually trained\\nsingle-channel, single-task DNNs. Extending this approach to three-task\\nparallel recognition reveals an expected performance decline yet maintains\\nsatisfactory classification accuracies of greater than 80% for all tasks. We\\nfurther introduce a novel end-to-end joint optimization framework to redesign\\nthe three-task classifier, demonstrating substantial improvements over the\\nmeta-atom library design and offering the potential for future multi-channel\\nDNN designs. Our study could pave the way for the development of ultrathin,\\nhigh-speed, and high-throughput optical neural computing systems.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

衍射神经网络(DNN)利用光的力量提高机器学习的计算性能,为高速、低能耗和大规模神经信息处理提供了途径。然而,现有的 DNN 架构大多针对单一任务进行了优化,因此缺乏在统一人工智能平台中同时执行多个任务所需的灵活性。在这项工作中,我们利用光的偏振和波长自由度,使用 MNIST、FMNIST 和 KMNIST 数据集实现了光学多任务识别。我们采用双层级联元表面,通过元原子库使用偏振和波长多路复用方案,构建了能够同时对两个任务进行分类的双通道 DNN。数值评估结果表明,其性能精度可与单独训练的单通道、单任务 DNN 相媲美。将这种方法扩展到三任务并行识别时,发现性能会出现预期的下降,但所有任务的分类准确率都保持在 80% 以上,令人满意。我们还引入了一个新颖的端到端联合优化框架,重新设计了三任务分类器,证明了与元原子库设计相比的实质性改进,并为未来的多通道 DNN 设计提供了可能性。我们的研究可以为开发超薄、高速和高通量的光学神经计算系统铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Multiplexed Metasurfaces for Multi-Task Learning with All-Optical Diffractive Processors
Diffractive Neural Networks (DNNs) leverage the power of light to enhance computational performance in machine learning, offering a pathway to high-speed, low-energy, and large-scale neural information processing. However, most existing DNN architectures are optimized for single tasks and thus lack the flexibility required for the simultaneous execution of multiple tasks within a unified artificial intelligence platform. In this work, we utilize the polarization and wavelength degrees of freedom of light to achieve optical multi-task identification using the MNIST, FMNIST, and KMNIST datasets. Employing bilayer cascaded metasurfaces, we construct dual-channel DNNs capable of simultaneously classifying two tasks, using polarization and wavelength multiplexing schemes through a meta-atom library. Numerical evaluations demonstrate performance accuracies comparable to those of individually trained single-channel, single-task DNNs. Extending this approach to three-task parallel recognition reveals an expected performance decline yet maintains satisfactory classification accuracies of greater than 80% for all tasks. We further introduce a novel end-to-end joint optimization framework to redesign the three-task classifier, demonstrating substantial improvements over the meta-atom library design and offering the potential for future multi-channel DNN designs. Our study could pave the way for the development of ultrathin, high-speed, and high-throughput optical neural computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信