Feng Pan, Xin Li, Amalya C. Johnson, Scott Dhuey, Ashley Saunders, Meng-Xia Hu, Jefferson P. Dixon, Sahil Dagli, Sze-Cheung Lau, Tingting Weng, Chih-Yi Chen, Jun-Hao Zeng, Rajas Apte, Tony F. Heinz, Fang Liu, Zi-Lan Deng, Jennifer A. Dionne
{"title":"连续体中平面手性准束缚态实现的室温谷选择性发射","authors":"Feng Pan, Xin Li, Amalya C. Johnson, Scott Dhuey, Ashley Saunders, Meng-Xia Hu, Jefferson P. Dixon, Sahil Dagli, Sze-Cheung Lau, Tingting Weng, Chih-Yi Chen, Jun-Hao Zeng, Rajas Apte, Tony F. Heinz, Fang Liu, Zi-Lan Deng, Jennifer A. Dionne","doi":"arxiv-2409.09806","DOIUrl":null,"url":null,"abstract":"Optically addressable spin-photon interfaces in monolayers of transition\nmetal dichalcogenides (TMDCs) are pivotal to realizing classical and quantum\noperations using photons. Valley pseudospin in TMDCs allows circularly\npolarized light to be coupled with electron (hole) spin, thus enabling\ninitialization and readout of both classical and quantum information. Rapid\nvalley-dephasing processes have impeded the development of scalable,\nhigh-performance valleytronic devices operating at room temperature. Here we\ndemonstrate that a chiral resonant metasurface can enable room-temperature\nvalley-selective emission. This platform, driven by chiral quasi-bound states\nin the continuum, provides circular eigen-polarization states featuring a high\nquality factor (Q-factor) and strong chiral near-field enhancement, and results\nin unitary emission circular dichroism (i.e. single-handed circularly polarized\nemission). Our fabricated high-Q-factor (> 200) Si chiral metasurfaces at\nvisible wavelengths strongly enhance valley-selective optical transitions in\ndevices incorporating MoSe2 monolayers under linearly polarized light\nexcitation, achieving a high degree of optical circular polarization (DOP) from\n100 K to 294 K and reaching nearly 0.5 at 294 K. The high DOP is attributed to\nenhanced exciton/trion radiative recombination rates for a specific valley. Our\nwork could facilitate the development of compact chiral classical and quantum\nlight sources and the creation of molecular chiral polaritons for quantum\nenantioselective synthesis.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature valley-selective emission enabled by planar chiral quasi-bound states in the continuum\",\"authors\":\"Feng Pan, Xin Li, Amalya C. Johnson, Scott Dhuey, Ashley Saunders, Meng-Xia Hu, Jefferson P. Dixon, Sahil Dagli, Sze-Cheung Lau, Tingting Weng, Chih-Yi Chen, Jun-Hao Zeng, Rajas Apte, Tony F. Heinz, Fang Liu, Zi-Lan Deng, Jennifer A. Dionne\",\"doi\":\"arxiv-2409.09806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optically addressable spin-photon interfaces in monolayers of transition\\nmetal dichalcogenides (TMDCs) are pivotal to realizing classical and quantum\\noperations using photons. Valley pseudospin in TMDCs allows circularly\\npolarized light to be coupled with electron (hole) spin, thus enabling\\ninitialization and readout of both classical and quantum information. Rapid\\nvalley-dephasing processes have impeded the development of scalable,\\nhigh-performance valleytronic devices operating at room temperature. Here we\\ndemonstrate that a chiral resonant metasurface can enable room-temperature\\nvalley-selective emission. This platform, driven by chiral quasi-bound states\\nin the continuum, provides circular eigen-polarization states featuring a high\\nquality factor (Q-factor) and strong chiral near-field enhancement, and results\\nin unitary emission circular dichroism (i.e. single-handed circularly polarized\\nemission). Our fabricated high-Q-factor (> 200) Si chiral metasurfaces at\\nvisible wavelengths strongly enhance valley-selective optical transitions in\\ndevices incorporating MoSe2 monolayers under linearly polarized light\\nexcitation, achieving a high degree of optical circular polarization (DOP) from\\n100 K to 294 K and reaching nearly 0.5 at 294 K. The high DOP is attributed to\\nenhanced exciton/trion radiative recombination rates for a specific valley. Our\\nwork could facilitate the development of compact chiral classical and quantum\\nlight sources and the creation of molecular chiral polaritons for quantum\\nenantioselective synthesis.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
过渡金属二卤化物(TMDCs)单层中可光学寻址的自旋光子界面是利用光子实现经典和量子操作的关键。TMDCs 中的谷假自旋允许圆偏振光与电子(空穴)自旋耦合,从而实现经典和量子信息的初始化和读出。快速的谷相减相过程阻碍了在室温下运行的可扩展高性能谷相电子器件的发展。在这里,我们证明了手性共振元表面可以实现室温谷选择性发射。该平台由连续体中的手性准束缚态驱动,可提供具有高品质因数(Q 因子)和强手性近场增强的圆特征极化态,并产生单元发射圆二色性(即单手圆极化发射)。在可见光波长下,我们制备的高 Q 因子(> 200)硅手性超表面在线性偏振光激发下强烈增强了包含 MoSe2 单层的器件的谷选择性光学转变,实现了从 100 K 到 294 K 的高度光学圆偏振(DOP),并在 294 K 时达到近 0.5。我们的研究工作将促进紧凑型手性经典光源和量子光源的开发,以及用于定量对映选择性合成的分子手性极化子的产生。
Room-temperature valley-selective emission enabled by planar chiral quasi-bound states in the continuum
Optically addressable spin-photon interfaces in monolayers of transition
metal dichalcogenides (TMDCs) are pivotal to realizing classical and quantum
operations using photons. Valley pseudospin in TMDCs allows circularly
polarized light to be coupled with electron (hole) spin, thus enabling
initialization and readout of both classical and quantum information. Rapid
valley-dephasing processes have impeded the development of scalable,
high-performance valleytronic devices operating at room temperature. Here we
demonstrate that a chiral resonant metasurface can enable room-temperature
valley-selective emission. This platform, driven by chiral quasi-bound states
in the continuum, provides circular eigen-polarization states featuring a high
quality factor (Q-factor) and strong chiral near-field enhancement, and results
in unitary emission circular dichroism (i.e. single-handed circularly polarized
emission). Our fabricated high-Q-factor (> 200) Si chiral metasurfaces at
visible wavelengths strongly enhance valley-selective optical transitions in
devices incorporating MoSe2 monolayers under linearly polarized light
excitation, achieving a high degree of optical circular polarization (DOP) from
100 K to 294 K and reaching nearly 0.5 at 294 K. The high DOP is attributed to
enhanced exciton/trion radiative recombination rates for a specific valley. Our
work could facilitate the development of compact chiral classical and quantum
light sources and the creation of molecular chiral polaritons for quantum
enantioselective synthesis.