铌酸锂薄膜上的可编程多功能集成微波光子电路

Chuangchuang WeiNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Hanke FengDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, Kaixuan YeNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Maarten EijkelNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Yvan KlaverNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Zhaoxi ChenDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, Akshay KelothNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Cheng WangDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, David MarpaungNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands
{"title":"铌酸锂薄膜上的可编程多功能集成微波光子电路","authors":"Chuangchuang WeiNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Hanke FengDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, Kaixuan YeNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Maarten EijkelNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Yvan KlaverNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Zhaoxi ChenDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, Akshay KelothNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Cheng WangDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, David MarpaungNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands","doi":"arxiv-2409.10227","DOIUrl":null,"url":null,"abstract":"Microwave photonics, with its advanced high-frequency signal processing\ncapabilities, is expected to play a crucial role in next-generation wireless\ncommunications and radar systems. The realization of highly integrated,\nhigh-performance, and multifunctional microwave photonic links will pave the\nway for its widespread deployment in practical applications, which is a\nsignificant challenge. Here, leveraging thin-film lithium niobate intensity\nmodulator and programmable cascaded microring resonators, we demonstrate for\nthe first time a tunable microwave photonic notch filter that simultaneously\nachieves high level of integration along with high dynamic range, high link\ngain, low noise figure, and ultra-high rejection ratio. Additionally, this\nprogrammable on-chip system is multifunctional, allowing for the dual-band\nnotch filter and the suppression of the high-power interference signal. This\nwork demonstrates the potential applications of the thin-film lithium niobate\nplatform in the field of high-performance integrated microwave photonic\nfiltering and signal processing, facilitating the advancement of microwave\nphotonic system towards practical applications.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable multifunctional integrated microwave photonic circuit on thin-film lithium niobate\",\"authors\":\"Chuangchuang WeiNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Hanke FengDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, Kaixuan YeNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Maarten EijkelNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Yvan KlaverNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Zhaoxi ChenDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, Akshay KelothNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands, Cheng WangDepartment of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China, David MarpaungNonlinear Nanophotonics Group, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Netherlands\",\"doi\":\"arxiv-2409.10227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave photonics, with its advanced high-frequency signal processing\\ncapabilities, is expected to play a crucial role in next-generation wireless\\ncommunications and radar systems. The realization of highly integrated,\\nhigh-performance, and multifunctional microwave photonic links will pave the\\nway for its widespread deployment in practical applications, which is a\\nsignificant challenge. Here, leveraging thin-film lithium niobate intensity\\nmodulator and programmable cascaded microring resonators, we demonstrate for\\nthe first time a tunable microwave photonic notch filter that simultaneously\\nachieves high level of integration along with high dynamic range, high link\\ngain, low noise figure, and ultra-high rejection ratio. Additionally, this\\nprogrammable on-chip system is multifunctional, allowing for the dual-band\\nnotch filter and the suppression of the high-power interference signal. This\\nwork demonstrates the potential applications of the thin-film lithium niobate\\nplatform in the field of high-performance integrated microwave photonic\\nfiltering and signal processing, facilitating the advancement of microwave\\nphotonic system towards practical applications.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微波光子技术具有先进的高频信号处理能力,有望在下一代无线通信和雷达系统中发挥关键作用。实现高度集成、高性能和多功能的微波光子链路将为其在实际应用中的广泛部署铺平道路,这是一项重大挑战。在这里,我们利用铌酸锂薄膜强度调制器和可编程级联微波谐振器,首次展示了一种可调谐微波光子陷波滤波器,它同时实现了高集成度、高动态范围、高链接增益、低噪声系数和超高抑制比。此外,这种可编程片上系统还具有多功能性,既可用于双带缺口滤波器,也可用于抑制大功率干扰信号。这项工作展示了薄膜铌酸锂平台在高性能集成微波光子滤波和信号处理领域的潜在应用,促进了微波光子系统走向实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Programmable multifunctional integrated microwave photonic circuit on thin-film lithium niobate
Microwave photonics, with its advanced high-frequency signal processing capabilities, is expected to play a crucial role in next-generation wireless communications and radar systems. The realization of highly integrated, high-performance, and multifunctional microwave photonic links will pave the way for its widespread deployment in practical applications, which is a significant challenge. Here, leveraging thin-film lithium niobate intensity modulator and programmable cascaded microring resonators, we demonstrate for the first time a tunable microwave photonic notch filter that simultaneously achieves high level of integration along with high dynamic range, high link gain, low noise figure, and ultra-high rejection ratio. Additionally, this programmable on-chip system is multifunctional, allowing for the dual-band notch filter and the suppression of the high-power interference signal. This work demonstrates the potential applications of the thin-film lithium niobate platform in the field of high-performance integrated microwave photonic filtering and signal processing, facilitating the advancement of microwave photonic system towards practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信