Andreas Salomon, Johannes Aberl, Lada Vukušić, Enrique Prado-Navarrete, Jacqueline Marböck, Diego-Haya Enriquez, Jeffrey Schuster, Kari Martinez, Heiko Groiss, Thomas Fromherz, Moritz Brehm
{"title":"用于硅室温增益的第 IV 组双异质结构发光二极管","authors":"Andreas Salomon, Johannes Aberl, Lada Vukušić, Enrique Prado-Navarrete, Jacqueline Marböck, Diego-Haya Enriquez, Jeffrey Schuster, Kari Martinez, Heiko Groiss, Thomas Fromherz, Moritz Brehm","doi":"arxiv-2409.11081","DOIUrl":null,"url":null,"abstract":"The lack of straightforward epitaxial integration of useful telecom lasers on\nsilicon remains the major bottleneck for bringing optical interconnect\ntechnology down to the on-chip level. Crystalline silicon itself, an indirect\nsemiconductor, is a poor light emitter. Here, we identify conceptionally simple\nSi/Si$_{1-x}$Ge$_x$/Si double heterostructures (DHS) with large Ge content ($x\n\\gtrsim 0.4$) as auspicious gain material suitable for Si-based integrated\noptics. In particular, using self-consistent Poisson-current transport\ncalculations, we show that Si diodes containing a 16 nm thick Si$_{1-x}$Ge$_x$\nlayer of high crystalline quality, centered at the p-n junction, results in\nefficient carrier accumulation in the DHS and gain if the diode is driven in\nforward direction. Despite the high strain, we unambiguously demonstrate that\nsuch prior unattainable defect-free DHS can be fabricated using ultra-low\ntemperature epitaxy at pristine growth pressures. Telecom light emission is\npersistent up to 360 K, and directly linked to a ~160 meV high conduction band\nbarrier for minority electron injection. This epitaxy approach allows further\nincreasing the Ge content in the DHS and creating dot-in-well heterostructures\nfor which even higher gains are predicted. Thus, the surprisingly facile DHS\npresented here can be an essential step toward novel classes of group-IV\noptoelectronic devices for silicon photonics.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A group-IV double heterostructure light emitting diode for room temperature gain in Silicon\",\"authors\":\"Andreas Salomon, Johannes Aberl, Lada Vukušić, Enrique Prado-Navarrete, Jacqueline Marböck, Diego-Haya Enriquez, Jeffrey Schuster, Kari Martinez, Heiko Groiss, Thomas Fromherz, Moritz Brehm\",\"doi\":\"arxiv-2409.11081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of straightforward epitaxial integration of useful telecom lasers on\\nsilicon remains the major bottleneck for bringing optical interconnect\\ntechnology down to the on-chip level. Crystalline silicon itself, an indirect\\nsemiconductor, is a poor light emitter. Here, we identify conceptionally simple\\nSi/Si$_{1-x}$Ge$_x$/Si double heterostructures (DHS) with large Ge content ($x\\n\\\\gtrsim 0.4$) as auspicious gain material suitable for Si-based integrated\\noptics. In particular, using self-consistent Poisson-current transport\\ncalculations, we show that Si diodes containing a 16 nm thick Si$_{1-x}$Ge$_x$\\nlayer of high crystalline quality, centered at the p-n junction, results in\\nefficient carrier accumulation in the DHS and gain if the diode is driven in\\nforward direction. Despite the high strain, we unambiguously demonstrate that\\nsuch prior unattainable defect-free DHS can be fabricated using ultra-low\\ntemperature epitaxy at pristine growth pressures. Telecom light emission is\\npersistent up to 360 K, and directly linked to a ~160 meV high conduction band\\nbarrier for minority electron injection. This epitaxy approach allows further\\nincreasing the Ge content in the DHS and creating dot-in-well heterostructures\\nfor which even higher gains are predicted. Thus, the surprisingly facile DHS\\npresented here can be an essential step toward novel classes of group-IV\\noptoelectronic devices for silicon photonics.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在硅片上无法直接外延集成有用的电信激光器,仍然是将光互连技术应用到芯片级的主要瓶颈。晶体硅本身是一种间接半导体,发光性能很差。在这里,我们发现概念上简单的硅/硅$_{1-x}$Ge$_x$/硅双异质结构(DHS)具有较大的 Ge 含量($x\gtrsim 0.4$),是适合硅基集成光学的吉祥增益材料。利用自洽泊松电流输运计算,我们特别发现,以 p-n 结为中心、含有 16 nm 厚、结晶质量高的 Si$_{1-x}$Ge$_x$ 层的硅二极管,在二极管向下驱动时,会导致 DHS 中载流子积累和增益效率低下。尽管存在高应变,我们还是明确地证明,这种以前无法实现的无缺陷 DHS 可以在原始生长压力下利用超低温外延技术制造出来。电信光发射可持续到 360 K,并与用于少数电子注入的 ~160 meV 高传导带垒直接相关。通过这种外延方法,可以进一步提高 DHS 中的 Ge 含量,并制造出点-阱异质结构,从而获得更高的增益。因此,这里介绍的令人惊讶的简易 DHS 可以成为硅光子学新型 IV 族光电器件的重要一步。
A group-IV double heterostructure light emitting diode for room temperature gain in Silicon
The lack of straightforward epitaxial integration of useful telecom lasers on
silicon remains the major bottleneck for bringing optical interconnect
technology down to the on-chip level. Crystalline silicon itself, an indirect
semiconductor, is a poor light emitter. Here, we identify conceptionally simple
Si/Si$_{1-x}$Ge$_x$/Si double heterostructures (DHS) with large Ge content ($x
\gtrsim 0.4$) as auspicious gain material suitable for Si-based integrated
optics. In particular, using self-consistent Poisson-current transport
calculations, we show that Si diodes containing a 16 nm thick Si$_{1-x}$Ge$_x$
layer of high crystalline quality, centered at the p-n junction, results in
efficient carrier accumulation in the DHS and gain if the diode is driven in
forward direction. Despite the high strain, we unambiguously demonstrate that
such prior unattainable defect-free DHS can be fabricated using ultra-low
temperature epitaxy at pristine growth pressures. Telecom light emission is
persistent up to 360 K, and directly linked to a ~160 meV high conduction band
barrier for minority electron injection. This epitaxy approach allows further
increasing the Ge content in the DHS and creating dot-in-well heterostructures
for which even higher gains are predicted. Thus, the surprisingly facile DHS
presented here can be an essential step toward novel classes of group-IV
optoelectronic devices for silicon photonics.