Jinyong Ma, Tongmiao Fan, Tuomas Haggren, Laura Valencia Molina, Matthew Parry, Saniya Shinde, Jihua Zhang, Rocio Camacho Morales, Frank Setzpfandt, Hark Hoe Tan, Chennupati Jagadish, Dragomir N. Neshev, Andrey A. Sukhorukov
{"title":"通过半导体元表面的非线性对称性破缺生成可调量子纠缠","authors":"Jinyong Ma, Tongmiao Fan, Tuomas Haggren, Laura Valencia Molina, Matthew Parry, Saniya Shinde, Jihua Zhang, Rocio Camacho Morales, Frank Setzpfandt, Hark Hoe Tan, Chennupati Jagadish, Dragomir N. Neshev, Andrey A. Sukhorukov","doi":"arxiv-2409.10845","DOIUrl":null,"url":null,"abstract":"Tunable biphoton quantum entanglement generated from nonlinear processes is\nhighly desirable for cutting-edge quantum technologies, yet its tunability is\nsubstantially constrained by the symmetry of material nonlinear tensors. Here,\nwe overcome this constraint by introducing symmetry-breaking in nonlinear\npolarization to generate optically tunable biphoton entanglement at picosecond\nspeeds. Asymmetric optical responses have made breakthroughs in classical\napplications like non-reciprocal light transmission. We now experimentally\ndemonstrate the nonlinear asymmetry response for biphoton entanglement using a\nsemiconductor metasurface incorporating [110] InGaP nano-resonators with\nstructural asymmetry. We realize continuous tuning of polarization entanglement\nfrom near-unentangled states to a Bell state. This tunability can also extend\nto produce tailored hyperentanglement. Furthermore, our nanoscale entanglement\nsource features an ultra-high coincidence-to-accidental ratio of\n$\\approx7\\times10^4$, outperforming existing semiconductor flat optics by two\norders of magnitude. Introducing asymmetric nonlinear response in quantum\nmetasurfaces opens new directions for tailoring on-demand quantum states and\nbeyond.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of tunable quantum entanglement via nonlinearity symmetry breaking in semiconductor metasurfaces\",\"authors\":\"Jinyong Ma, Tongmiao Fan, Tuomas Haggren, Laura Valencia Molina, Matthew Parry, Saniya Shinde, Jihua Zhang, Rocio Camacho Morales, Frank Setzpfandt, Hark Hoe Tan, Chennupati Jagadish, Dragomir N. Neshev, Andrey A. Sukhorukov\",\"doi\":\"arxiv-2409.10845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunable biphoton quantum entanglement generated from nonlinear processes is\\nhighly desirable for cutting-edge quantum technologies, yet its tunability is\\nsubstantially constrained by the symmetry of material nonlinear tensors. Here,\\nwe overcome this constraint by introducing symmetry-breaking in nonlinear\\npolarization to generate optically tunable biphoton entanglement at picosecond\\nspeeds. Asymmetric optical responses have made breakthroughs in classical\\napplications like non-reciprocal light transmission. We now experimentally\\ndemonstrate the nonlinear asymmetry response for biphoton entanglement using a\\nsemiconductor metasurface incorporating [110] InGaP nano-resonators with\\nstructural asymmetry. We realize continuous tuning of polarization entanglement\\nfrom near-unentangled states to a Bell state. This tunability can also extend\\nto produce tailored hyperentanglement. Furthermore, our nanoscale entanglement\\nsource features an ultra-high coincidence-to-accidental ratio of\\n$\\\\approx7\\\\times10^4$, outperforming existing semiconductor flat optics by two\\norders of magnitude. Introducing asymmetric nonlinear response in quantum\\nmetasurfaces opens new directions for tailoring on-demand quantum states and\\nbeyond.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generation of tunable quantum entanglement via nonlinearity symmetry breaking in semiconductor metasurfaces
Tunable biphoton quantum entanglement generated from nonlinear processes is
highly desirable for cutting-edge quantum technologies, yet its tunability is
substantially constrained by the symmetry of material nonlinear tensors. Here,
we overcome this constraint by introducing symmetry-breaking in nonlinear
polarization to generate optically tunable biphoton entanglement at picosecond
speeds. Asymmetric optical responses have made breakthroughs in classical
applications like non-reciprocal light transmission. We now experimentally
demonstrate the nonlinear asymmetry response for biphoton entanglement using a
semiconductor metasurface incorporating [110] InGaP nano-resonators with
structural asymmetry. We realize continuous tuning of polarization entanglement
from near-unentangled states to a Bell state. This tunability can also extend
to produce tailored hyperentanglement. Furthermore, our nanoscale entanglement
source features an ultra-high coincidence-to-accidental ratio of
$\approx7\times10^4$, outperforming existing semiconductor flat optics by two
orders of magnitude. Introducing asymmetric nonlinear response in quantum
metasurfaces opens new directions for tailoring on-demand quantum states and
beyond.