针对右删失时间到事件数据的基于回归的近因推断

Kendrick Li, George C. Linderman, Xu Shi, Eric J. Tchetgen Tchetgen
{"title":"针对右删失时间到事件数据的基于回归的近因推断","authors":"Kendrick Li, George C. Linderman, Xu Shi, Eric J. Tchetgen Tchetgen","doi":"arxiv-2409.08924","DOIUrl":null,"url":null,"abstract":"Unmeasured confounding is one of the major concerns in causal inference from\nobservational data. Proximal causal inference (PCI) is an emerging\nmethodological framework to detect and potentially account for confounding bias\nby carefully leveraging a pair of negative control exposure (NCE) and outcome\n(NCO) variables, also known as treatment and outcome confounding proxies.\nAlthough regression-based PCI is well developed for binary and continuous\noutcomes, analogous PCI regression methods for right-censored time-to-event\noutcomes are currently lacking. In this paper, we propose a novel two-stage\nregression PCI approach for right-censored survival data under an additive\nhazard structural model. We provide theoretical justification for the proposed\napproach tailored to different types of NCOs, including continuous, count, and\nright-censored time-to-event variables. We illustrate the approach with an\nevaluation of the effectiveness of right heart catheterization among critically\nill patients using data from the SUPPORT study. Our method is implemented in\nthe open-access R package 'pci2s'.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression-based proximal causal inference for right-censored time-to-event data\",\"authors\":\"Kendrick Li, George C. Linderman, Xu Shi, Eric J. Tchetgen Tchetgen\",\"doi\":\"arxiv-2409.08924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmeasured confounding is one of the major concerns in causal inference from\\nobservational data. Proximal causal inference (PCI) is an emerging\\nmethodological framework to detect and potentially account for confounding bias\\nby carefully leveraging a pair of negative control exposure (NCE) and outcome\\n(NCO) variables, also known as treatment and outcome confounding proxies.\\nAlthough regression-based PCI is well developed for binary and continuous\\noutcomes, analogous PCI regression methods for right-censored time-to-event\\noutcomes are currently lacking. In this paper, we propose a novel two-stage\\nregression PCI approach for right-censored survival data under an additive\\nhazard structural model. We provide theoretical justification for the proposed\\napproach tailored to different types of NCOs, including continuous, count, and\\nright-censored time-to-event variables. We illustrate the approach with an\\nevaluation of the effectiveness of right heart catheterization among critically\\nill patients using data from the SUPPORT study. Our method is implemented in\\nthe open-access R package 'pci2s'.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

未测量的混杂因素是根据观察数据进行因果推断的主要问题之一。近端因果推断(PCI)是一种新兴的方法论框架,它通过仔细利用一对负控制暴露(NCE)和结果(NCO)变量(也称为治疗和结果混杂代理变量)来检测和潜在地解释混杂偏倚。虽然基于回归的 PCI 已针对二元和连续结果得到了很好的发展,但目前还缺乏针对右删失时间到事件结果的类似 PCI 回归方法。在本文中,我们提出了一种新颖的两阶段回归 PCI 方法,用于加性危害结构模型下的右删失生存数据。我们针对不同类型的 NCO(包括连续变量、计数变量和右删失时间到事件变量),为所提出的方法提供了理论依据。我们利用 SUPPORT 研究的数据对重症患者进行右心导管检查的有效性进行了评估,以此来说明我们的方法。我们的方法是在开放存取的 R 软件包 "pci2s "中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression-based proximal causal inference for right-censored time-to-event data
Unmeasured confounding is one of the major concerns in causal inference from observational data. Proximal causal inference (PCI) is an emerging methodological framework to detect and potentially account for confounding bias by carefully leveraging a pair of negative control exposure (NCE) and outcome (NCO) variables, also known as treatment and outcome confounding proxies. Although regression-based PCI is well developed for binary and continuous outcomes, analogous PCI regression methods for right-censored time-to-event outcomes are currently lacking. In this paper, we propose a novel two-stage regression PCI approach for right-censored survival data under an additive hazard structural model. We provide theoretical justification for the proposed approach tailored to different types of NCOs, including continuous, count, and right-censored time-to-event variables. We illustrate the approach with an evaluation of the effectiveness of right heart catheterization among critically ill patients using data from the SUPPORT study. Our method is implemented in the open-access R package 'pci2s'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信