为梦幻篮球动态量化球员价值

Zach Rosenof
{"title":"为梦幻篮球动态量化球员价值","authors":"Zach Rosenof","doi":"arxiv-2409.09884","DOIUrl":null,"url":null,"abstract":"Previous work on fantasy basketball quantifies player value for category\nleagues without taking draft circumstances into account. Quantifying value in\nthis way is convenient, but inherently limited as a strategy, because it\nprecludes the possibility of dynamic adaptation. This work introduces a\nframework for dynamic algorithms, dubbed \"H-scoring\", and describes an\nimplementation of the framework for head-to-head formats, dubbed $H_0$. $H_0$\nmodels many of the main aspects of category league strategy including category\nweighting, positional assignments, and format-specific objectives. Head-to-head\nsimulations provide evidence that $H_0$ outperforms static ranking lists.\nCategory-level results from the simulations reveal that one component of\n$H_0$'s strategy is punting a subset of categories, which it learns to do\nimplicitly.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic quantification of player value for fantasy basketball\",\"authors\":\"Zach Rosenof\",\"doi\":\"arxiv-2409.09884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work on fantasy basketball quantifies player value for category\\nleagues without taking draft circumstances into account. Quantifying value in\\nthis way is convenient, but inherently limited as a strategy, because it\\nprecludes the possibility of dynamic adaptation. This work introduces a\\nframework for dynamic algorithms, dubbed \\\"H-scoring\\\", and describes an\\nimplementation of the framework for head-to-head formats, dubbed $H_0$. $H_0$\\nmodels many of the main aspects of category league strategy including category\\nweighting, positional assignments, and format-specific objectives. Head-to-head\\nsimulations provide evidence that $H_0$ outperforms static ranking lists.\\nCategory-level results from the simulations reveal that one component of\\n$H_0$'s strategy is punting a subset of categories, which it learns to do\\nimplicitly.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往关于梦幻篮球的研究都是在不考虑选秀情况的情况下量化球员在各类联赛中的价值。以这种方式量化价值虽然方便,但作为一种策略却有其局限性,因为它排除了动态调整的可能性。这项工作介绍了一个动态算法框架,称为 "H-计分",并描述了该框架在头对头赛制中的实施,称为 "H_0$"。H_0$模拟了类别联赛策略的许多主要方面,包括类别加权、位置分配和特定赛制目标。模拟结果显示,$H_0$策略的一个组成部分是对一个类别子集进行惩罚,而这正是它所要学习的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic quantification of player value for fantasy basketball
Previous work on fantasy basketball quantifies player value for category leagues without taking draft circumstances into account. Quantifying value in this way is convenient, but inherently limited as a strategy, because it precludes the possibility of dynamic adaptation. This work introduces a framework for dynamic algorithms, dubbed "H-scoring", and describes an implementation of the framework for head-to-head formats, dubbed $H_0$. $H_0$ models many of the main aspects of category league strategy including category weighting, positional assignments, and format-specific objectives. Head-to-head simulations provide evidence that $H_0$ outperforms static ranking lists. Category-level results from the simulations reveal that one component of $H_0$'s strategy is punting a subset of categories, which it learns to do implicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信