协整矩阵自回归模型

Zebang Li, Han Xiao
{"title":"协整矩阵自回归模型","authors":"Zebang Li, Han Xiao","doi":"arxiv-2409.10860","DOIUrl":null,"url":null,"abstract":"We propose a novel cointegrated autoregressive model for matrix-valued time\nseries, with bi-linear cointegrating vectors corresponding to the rows and\ncolumns of the matrix data. Compared to the traditional cointegration analysis,\nour proposed matrix cointegration model better preserves the inherent structure\nof the data and enables corresponding interpretations. To estimate the\ncointegrating vectors as well as other coefficients, we introduce two types of\nestimators based on least squares and maximum likelihood. We investigate the\nasymptotic properties of the cointegrated matrix autoregressive model under the\nexistence of trend and establish the asymptotic distributions for the\ncointegrating vectors, as well as other model parameters. We conduct extensive\nsimulations to demonstrate its superior performance over traditional methods.\nIn addition, we apply our proposed model to Fama-French portfolios and develop\na effective pairs trading strategy.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cointegrated Matrix Autoregression Models\",\"authors\":\"Zebang Li, Han Xiao\",\"doi\":\"arxiv-2409.10860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel cointegrated autoregressive model for matrix-valued time\\nseries, with bi-linear cointegrating vectors corresponding to the rows and\\ncolumns of the matrix data. Compared to the traditional cointegration analysis,\\nour proposed matrix cointegration model better preserves the inherent structure\\nof the data and enables corresponding interpretations. To estimate the\\ncointegrating vectors as well as other coefficients, we introduce two types of\\nestimators based on least squares and maximum likelihood. We investigate the\\nasymptotic properties of the cointegrated matrix autoregressive model under the\\nexistence of trend and establish the asymptotic distributions for the\\ncointegrating vectors, as well as other model parameters. We conduct extensive\\nsimulations to demonstrate its superior performance over traditional methods.\\nIn addition, we apply our proposed model to Fama-French portfolios and develop\\na effective pairs trading strategy.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为矩阵值时间序列提出了一种新的协整自回归模型,其双线性协整向量与矩阵数据的行和列相对应。与传统的协整分析相比,我们提出的矩阵协整模型更好地保留了数据的内在结构,并能进行相应的解释。为了估计协整向量和其他系数,我们引入了基于最小二乘法和最大似然法的两种估计方法。我们研究了趋势存在下协整矩阵自回归模型的渐近特性,并建立了协整向量以及其他模型参数的渐近分布。此外,我们还将提出的模型应用于法玛-法式投资组合,并开发了有效的配对交易策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cointegrated Matrix Autoregression Models
We propose a novel cointegrated autoregressive model for matrix-valued time series, with bi-linear cointegrating vectors corresponding to the rows and columns of the matrix data. Compared to the traditional cointegration analysis, our proposed matrix cointegration model better preserves the inherent structure of the data and enables corresponding interpretations. To estimate the cointegrating vectors as well as other coefficients, we introduce two types of estimators based on least squares and maximum likelihood. We investigate the asymptotic properties of the cointegrated matrix autoregressive model under the existence of trend and establish the asymptotic distributions for the cointegrating vectors, as well as other model parameters. We conduct extensive simulations to demonstrate its superior performance over traditional methods. In addition, we apply our proposed model to Fama-French portfolios and develop a effective pairs trading strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信