追逐阴影:匪夷所思的假设如何歪曲我们对因果估计的理解

Stijn Vansteelandt, Kelly Van Lancker
{"title":"追逐阴影:匪夷所思的假设如何歪曲我们对因果估计的理解","authors":"Stijn Vansteelandt, Kelly Van Lancker","doi":"arxiv-2409.11162","DOIUrl":null,"url":null,"abstract":"The ICH E9 (R1) addendum on estimands, coupled with recent advancements in\ncausal inference, has prompted a shift towards using model-free treatment\neffect estimands that are more closely aligned with the underlying scientific\nquestion. This represents a departure from traditional, model-dependent\napproaches where the statistical model often overshadows the inquiry itself.\nWhile this shift is a positive development, it has unintentionally led to the\nprioritization of an estimand's theoretical appeal over its practical\nlearnability from data under plausible assumptions. We illustrate this by\nscrutinizing assumptions in the recent clinical trials literature on principal\nstratum estimands, demonstrating that some popular assumptions are not only\nimplausible but often inevitably violated. We advocate for a more balanced\napproach to estimand formulation, one that carefully considers both the\nscientific relevance and the practical feasibility of estimation under\nrealistic conditions.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chasing Shadows: How Implausible Assumptions Skew Our Understanding of Causal Estimands\",\"authors\":\"Stijn Vansteelandt, Kelly Van Lancker\",\"doi\":\"arxiv-2409.11162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ICH E9 (R1) addendum on estimands, coupled with recent advancements in\\ncausal inference, has prompted a shift towards using model-free treatment\\neffect estimands that are more closely aligned with the underlying scientific\\nquestion. This represents a departure from traditional, model-dependent\\napproaches where the statistical model often overshadows the inquiry itself.\\nWhile this shift is a positive development, it has unintentionally led to the\\nprioritization of an estimand's theoretical appeal over its practical\\nlearnability from data under plausible assumptions. We illustrate this by\\nscrutinizing assumptions in the recent clinical trials literature on principal\\nstratum estimands, demonstrating that some popular assumptions are not only\\nimplausible but often inevitably violated. We advocate for a more balanced\\napproach to estimand formulation, one that carefully considers both the\\nscientific relevance and the practical feasibility of estimation under\\nrealistic conditions.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ICH E9 (R1)关于估计值的附录,加上最近因果推断方面的进步,促使人们转向使用与基本科学问题更密切相关的无模型治疗效果估计值。虽然这种转变是一种积极的发展,但它无意中导致了估算指标的理论吸引力优先于其在合理假设下从数据中的实际可学习性。我们通过对近期临床试验文献中有关本底估计值的假设进行细分来说明这一点,证明一些流行的假设不仅不合理,而且经常不可避免地遭到违反。我们主张采用更加平衡的方法来制定估计值,即在现实条件下仔细考虑估计值的科学相关性和实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chasing Shadows: How Implausible Assumptions Skew Our Understanding of Causal Estimands
The ICH E9 (R1) addendum on estimands, coupled with recent advancements in causal inference, has prompted a shift towards using model-free treatment effect estimands that are more closely aligned with the underlying scientific question. This represents a departure from traditional, model-dependent approaches where the statistical model often overshadows the inquiry itself. While this shift is a positive development, it has unintentionally led to the prioritization of an estimand's theoretical appeal over its practical learnability from data under plausible assumptions. We illustrate this by scrutinizing assumptions in the recent clinical trials literature on principal stratum estimands, demonstrating that some popular assumptions are not only implausible but often inevitably violated. We advocate for a more balanced approach to estimand formulation, one that carefully considers both the scientific relevance and the practical feasibility of estimation under realistic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信