通过α变换预测生命表死亡人数的年龄分布

Han Lin Shang, Steven Haberman
{"title":"通过α变换预测生命表死亡人数的年龄分布","authors":"Han Lin Shang, Steven Haberman","doi":"arxiv-2409.11658","DOIUrl":null,"url":null,"abstract":"We introduce a compositional power transformation, known as an\n{\\alpha}-transformation, to model and forecast a time series of life-table\ndeath counts, possibly with zero counts observed at older ages. As a\ngeneralisation of the isometric log-ratio transformation (i.e., {\\alpha} = 0),\nthe {\\alpha} transformation relies on the tuning parameter {\\alpha}, which can\nbe determined in a data-driven manner. Using the Australian age-specific period\nlife-table death counts from 1921 to 2020, the {\\alpha} transformation can\nproduce more accurate short-term point and interval forecasts than the\nlog-ratio transformation. The improved forecast accuracy of life-table death\ncounts is of great importance to demographers and government planners for\nestimating survival probabilities and life expectancy and actuaries for\ndetermining annuity prices and reserves for various initial ages and maturity\nterms.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting age distribution of life-table death counts via α-transformation\",\"authors\":\"Han Lin Shang, Steven Haberman\",\"doi\":\"arxiv-2409.11658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a compositional power transformation, known as an\\n{\\\\alpha}-transformation, to model and forecast a time series of life-table\\ndeath counts, possibly with zero counts observed at older ages. As a\\ngeneralisation of the isometric log-ratio transformation (i.e., {\\\\alpha} = 0),\\nthe {\\\\alpha} transformation relies on the tuning parameter {\\\\alpha}, which can\\nbe determined in a data-driven manner. Using the Australian age-specific period\\nlife-table death counts from 1921 to 2020, the {\\\\alpha} transformation can\\nproduce more accurate short-term point and interval forecasts than the\\nlog-ratio transformation. The improved forecast accuracy of life-table death\\ncounts is of great importance to demographers and government planners for\\nestimating survival probabilities and life expectancy and actuaries for\\ndetermining annuity prices and reserves for various initial ages and maturity\\nterms.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种被称为{\alpha}变换的组成幂变换,来模拟和预测生命-死亡计数的时间序列,其中可能在较大年龄段观测到零计数。作为等距对数比率变换(即{\alpha} = 0)的一般化,{\alpha}变换依赖于{\alpha}调谐参数,该参数可以通过数据驱动的方式确定。利用澳大利亚从 1921 年到 2020 年特定年龄段的生命表死亡人数,{\alpha}变换可以产生比对数变换更准确的短期点预测和区间预测。生命表死亡人数预测准确性的提高,对于人口学家和政府规划人员估计生存概率和预期寿命,以及精算师确定不同初始年龄和成熟期的年金价格和储备金,都具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting age distribution of life-table death counts via α-transformation
We introduce a compositional power transformation, known as an {\alpha}-transformation, to model and forecast a time series of life-table death counts, possibly with zero counts observed at older ages. As a generalisation of the isometric log-ratio transformation (i.e., {\alpha} = 0), the {\alpha} transformation relies on the tuning parameter {\alpha}, which can be determined in a data-driven manner. Using the Australian age-specific period life-table death counts from 1921 to 2020, the {\alpha} transformation can produce more accurate short-term point and interval forecasts than the log-ratio transformation. The improved forecast accuracy of life-table death counts is of great importance to demographers and government planners for estimating survival probabilities and life expectancy and actuaries for determining annuity prices and reserves for various initial ages and maturity terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信