{"title":"k 近邻累积分布函数中原始非高斯性的小尺度特征","authors":"William R Coulton, Tom Abel, Arka Banerjee","doi":"10.1093/mnras/stae2108","DOIUrl":null,"url":null,"abstract":"Searches for primordial non-Gaussianity in cosmological perturbations are a key means of revealing novel primordial physics. However, robustly extracting signatures of primordial non-Gaussianity from non-linear scales of the late-time Universe is an open problem. In this paper, we apply k-Nearest Neighbor cumulative distribution functions, kNN-CDFs, to the quijote-png simulations to explore the sensitivity of kNN-CDFs to primordial non-Gaussianity. An interesting result is that for halo samples with Mh < 1014 M⊙ h−1, the kNN-CDFs respond to equilateral PNG in a manner distinct from the other parameters. This persists in the galaxy catalogs in redshift space and can be differentiated from the impact of galaxy modelling, at least within the halo occupation distribution (HOD) framework considered here. kNN-CDFs are related to counts-in-cells and, through mapping a subset of the kNN-CDF measurements into the count-in-cells picture, we show that our results can be modeled analytically. A caveat of the analysis is that we only consider the HOD framework, including assembly bias. It will be interesting to validate these results with other techniques for modeling the galaxy–halo connection, e.g. (hybrid) effective field theory or semi-analytical methods.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"24 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-scale signatures of primordial non-Gaussianity in k-Nearest neighbour cumulative distribution functions\",\"authors\":\"William R Coulton, Tom Abel, Arka Banerjee\",\"doi\":\"10.1093/mnras/stae2108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Searches for primordial non-Gaussianity in cosmological perturbations are a key means of revealing novel primordial physics. However, robustly extracting signatures of primordial non-Gaussianity from non-linear scales of the late-time Universe is an open problem. In this paper, we apply k-Nearest Neighbor cumulative distribution functions, kNN-CDFs, to the quijote-png simulations to explore the sensitivity of kNN-CDFs to primordial non-Gaussianity. An interesting result is that for halo samples with Mh < 1014 M⊙ h−1, the kNN-CDFs respond to equilateral PNG in a manner distinct from the other parameters. This persists in the galaxy catalogs in redshift space and can be differentiated from the impact of galaxy modelling, at least within the halo occupation distribution (HOD) framework considered here. kNN-CDFs are related to counts-in-cells and, through mapping a subset of the kNN-CDF measurements into the count-in-cells picture, we show that our results can be modeled analytically. A caveat of the analysis is that we only consider the HOD framework, including assembly bias. It will be interesting to validate these results with other techniques for modeling the galaxy–halo connection, e.g. (hybrid) effective field theory or semi-analytical methods.\",\"PeriodicalId\":18930,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae2108\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae2108","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Small-scale signatures of primordial non-Gaussianity in k-Nearest neighbour cumulative distribution functions
Searches for primordial non-Gaussianity in cosmological perturbations are a key means of revealing novel primordial physics. However, robustly extracting signatures of primordial non-Gaussianity from non-linear scales of the late-time Universe is an open problem. In this paper, we apply k-Nearest Neighbor cumulative distribution functions, kNN-CDFs, to the quijote-png simulations to explore the sensitivity of kNN-CDFs to primordial non-Gaussianity. An interesting result is that for halo samples with Mh < 1014 M⊙ h−1, the kNN-CDFs respond to equilateral PNG in a manner distinct from the other parameters. This persists in the galaxy catalogs in redshift space and can be differentiated from the impact of galaxy modelling, at least within the halo occupation distribution (HOD) framework considered here. kNN-CDFs are related to counts-in-cells and, through mapping a subset of the kNN-CDF measurements into the count-in-cells picture, we show that our results can be modeled analytically. A caveat of the analysis is that we only consider the HOD framework, including assembly bias. It will be interesting to validate these results with other techniques for modeling the galaxy–halo connection, e.g. (hybrid) effective field theory or semi-analytical methods.
期刊介绍:
Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.