L Marconato, L Audin, M-P Doin, J-M Nocquet, P Jarrin, F Rolandone, N Harrichhausen, P Mothes, H Mora-Páez, D Cisneros
{"title":"国际合成孔径雷达观测到的厄瓜多尔-哥伦比亚南部北安第斯斜坡的内部变形","authors":"L Marconato, L Audin, M-P Doin, J-M Nocquet, P Jarrin, F Rolandone, N Harrichhausen, P Mothes, H Mora-Páez, D Cisneros","doi":"10.1093/gji/ggae338","DOIUrl":null,"url":null,"abstract":"Summary In the Northern Andes, partitioning of oblique subduction of the Nazca plate beneath the South American continent induces a northeastward motion of the North Andean Sliver. The strain resulting from this motion is absorbed by crustal faults, which have produced magnitude 7 + earthquakes historically in the Andean Cordillera of Ecuador and southern Colombia. In order to quantify the strain in that area, we derive a high-resolution surface velocity map using InSAR time-series processing. We analyzed 6 to 8 years of Sentinel-1 data and combined different satellite line-of-sight directions to produce a reliable velocity map in the East direction. We use interpolated GNSS data to express the velocity map with respect to Stable South America and remove the long-wavelength pattern due to the post-seismic deformation following the 2016 Mw 7.8 Pedernales earthquake. The InSAR velocity map finds high E-W shortening strain rates along N-S trending structures within the Western Cordillera and the Interandean valley, with little deformation taking place east of them. This result strengthens the previous proposition of a ∼350 km long Quito-Latacunga tectonic block, forming a restraining bend in the overall right-lateral strike-slip fault system accommodating the northeastward escape motion of the North Andean Sliver. However, the high spatial resolution provided by InSAR indicates that previously proposed boundaries for this block need to be revised. In particular, InSAR results highlight high strain rate (>300 nstrain/yr) along undescribed active structures, south and west of the proposed limits for the Quito-Latacunga block, respectively in Peltetec and Ibarra regions. Interestingly, the two areas with the largest strain rates spatially correlate with the proposed areas of large historical earthquakes. Modeling of the InSAR and GNSS velocities in these areas suggests shallow coupling and high slip rates on structures which, previously, were not identified as active. We also demonstrate a slow-down of the shallow aseismic slip on the Quito fault after the Pedernales earthquake, suggesting that stress changes following large megathrust events might trigger transient slip behaviors on crustal faults. The high-resolution strain map provided by this work provides a new basis for future tectonic models in the Ecuadorian and southern Colombian Andes, and will contribute to the seismic hazard assessment in this highly populated area of the Andes.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"18 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal deformation of the North Andean Sliver in Ecuador-southern Colombia observed by InSAR\",\"authors\":\"L Marconato, L Audin, M-P Doin, J-M Nocquet, P Jarrin, F Rolandone, N Harrichhausen, P Mothes, H Mora-Páez, D Cisneros\",\"doi\":\"10.1093/gji/ggae338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In the Northern Andes, partitioning of oblique subduction of the Nazca plate beneath the South American continent induces a northeastward motion of the North Andean Sliver. The strain resulting from this motion is absorbed by crustal faults, which have produced magnitude 7 + earthquakes historically in the Andean Cordillera of Ecuador and southern Colombia. In order to quantify the strain in that area, we derive a high-resolution surface velocity map using InSAR time-series processing. We analyzed 6 to 8 years of Sentinel-1 data and combined different satellite line-of-sight directions to produce a reliable velocity map in the East direction. We use interpolated GNSS data to express the velocity map with respect to Stable South America and remove the long-wavelength pattern due to the post-seismic deformation following the 2016 Mw 7.8 Pedernales earthquake. The InSAR velocity map finds high E-W shortening strain rates along N-S trending structures within the Western Cordillera and the Interandean valley, with little deformation taking place east of them. This result strengthens the previous proposition of a ∼350 km long Quito-Latacunga tectonic block, forming a restraining bend in the overall right-lateral strike-slip fault system accommodating the northeastward escape motion of the North Andean Sliver. However, the high spatial resolution provided by InSAR indicates that previously proposed boundaries for this block need to be revised. In particular, InSAR results highlight high strain rate (>300 nstrain/yr) along undescribed active structures, south and west of the proposed limits for the Quito-Latacunga block, respectively in Peltetec and Ibarra regions. Interestingly, the two areas with the largest strain rates spatially correlate with the proposed areas of large historical earthquakes. Modeling of the InSAR and GNSS velocities in these areas suggests shallow coupling and high slip rates on structures which, previously, were not identified as active. We also demonstrate a slow-down of the shallow aseismic slip on the Quito fault after the Pedernales earthquake, suggesting that stress changes following large megathrust events might trigger transient slip behaviors on crustal faults. The high-resolution strain map provided by this work provides a new basis for future tectonic models in the Ecuadorian and southern Colombian Andes, and will contribute to the seismic hazard assessment in this highly populated area of the Andes.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae338\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae338","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Internal deformation of the North Andean Sliver in Ecuador-southern Colombia observed by InSAR
Summary In the Northern Andes, partitioning of oblique subduction of the Nazca plate beneath the South American continent induces a northeastward motion of the North Andean Sliver. The strain resulting from this motion is absorbed by crustal faults, which have produced magnitude 7 + earthquakes historically in the Andean Cordillera of Ecuador and southern Colombia. In order to quantify the strain in that area, we derive a high-resolution surface velocity map using InSAR time-series processing. We analyzed 6 to 8 years of Sentinel-1 data and combined different satellite line-of-sight directions to produce a reliable velocity map in the East direction. We use interpolated GNSS data to express the velocity map with respect to Stable South America and remove the long-wavelength pattern due to the post-seismic deformation following the 2016 Mw 7.8 Pedernales earthquake. The InSAR velocity map finds high E-W shortening strain rates along N-S trending structures within the Western Cordillera and the Interandean valley, with little deformation taking place east of them. This result strengthens the previous proposition of a ∼350 km long Quito-Latacunga tectonic block, forming a restraining bend in the overall right-lateral strike-slip fault system accommodating the northeastward escape motion of the North Andean Sliver. However, the high spatial resolution provided by InSAR indicates that previously proposed boundaries for this block need to be revised. In particular, InSAR results highlight high strain rate (>300 nstrain/yr) along undescribed active structures, south and west of the proposed limits for the Quito-Latacunga block, respectively in Peltetec and Ibarra regions. Interestingly, the two areas with the largest strain rates spatially correlate with the proposed areas of large historical earthquakes. Modeling of the InSAR and GNSS velocities in these areas suggests shallow coupling and high slip rates on structures which, previously, were not identified as active. We also demonstrate a slow-down of the shallow aseismic slip on the Quito fault after the Pedernales earthquake, suggesting that stress changes following large megathrust events might trigger transient slip behaviors on crustal faults. The high-resolution strain map provided by this work provides a new basis for future tectonic models in the Ecuadorian and southern Colombian Andes, and will contribute to the seismic hazard assessment in this highly populated area of the Andes.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.