共切束上的诱导几乎副卡勒爱因斯坦度量

IF 0.6 4区 数学 Q3 MATHEMATICS
Andreas Čap, Thomas Mettler
{"title":"共切束上的诱导几乎副卡勒爱因斯坦度量","authors":"Andreas Čap, Thomas Mettler","doi":"10.1093/qmath/haae047","DOIUrl":null,"url":null,"abstract":"In earlier work, we have shown that for certain geometric structures on a smooth manifold M of dimension n, one obtains an almost para-Kähler–Einstein metric on a manifold A of dimension 2n associated to the structure on M. The geometry also associates a diffeomorphism between A and $T^*M$ to any torsion-free connection compatible with the geometric structure. Hence we can use this construction to associate to each compatible connection an almost para-Kähler–Einstein metric on $T^*M$. In this short article, we discuss the relation of these metrics to Patterson–Walker metrics and derive explicit formulae for them in the cases of projective, conformal and Grassmannian structures.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced almost para-Kähler Einstein metrics on cotangent bundles\",\"authors\":\"Andreas Čap, Thomas Mettler\",\"doi\":\"10.1093/qmath/haae047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In earlier work, we have shown that for certain geometric structures on a smooth manifold M of dimension n, one obtains an almost para-Kähler–Einstein metric on a manifold A of dimension 2n associated to the structure on M. The geometry also associates a diffeomorphism between A and $T^*M$ to any torsion-free connection compatible with the geometric structure. Hence we can use this construction to associate to each compatible connection an almost para-Kähler–Einstein metric on $T^*M$. In this short article, we discuss the relation of these metrics to Patterson–Walker metrics and derive explicit formulae for them in the cases of projective, conformal and Grassmannian structures.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae047\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在早先的工作中,我们已经证明,对于维数为 n 的光滑流形 M 上的某些几何结构,我们可以在维数为 2n 的流形 A 上得到一个与 M 上的结构相关联的近似对凯勒-爱因斯坦度量。因此,我们可以利用这一构造,在 $T^*M$ 上为每个兼容连接关联一个几乎准凯勒-爱因斯坦度量。在这篇短文中,我们将讨论这些度量与帕特森-沃克度量的关系,并推导出它们在投影结构、共形结构和格拉斯曼结构情况下的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced almost para-Kähler Einstein metrics on cotangent bundles
In earlier work, we have shown that for certain geometric structures on a smooth manifold M of dimension n, one obtains an almost para-Kähler–Einstein metric on a manifold A of dimension 2n associated to the structure on M. The geometry also associates a diffeomorphism between A and $T^*M$ to any torsion-free connection compatible with the geometric structure. Hence we can use this construction to associate to each compatible connection an almost para-Kähler–Einstein metric on $T^*M$. In this short article, we discuss the relation of these metrics to Patterson–Walker metrics and derive explicit formulae for them in the cases of projective, conformal and Grassmannian structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信