推荐系统中的因果发现:实例与讨论

Emanuele Cavenaghi, Fabio Stella, Markus Zanker
{"title":"推荐系统中的因果发现:实例与讨论","authors":"Emanuele Cavenaghi, Fabio Stella, Markus Zanker","doi":"arxiv-2409.10271","DOIUrl":null,"url":null,"abstract":"Causality is receiving increasing attention by the artificial intelligence\nand machine learning communities. This paper gives an example of modelling a\nrecommender system problem using causal graphs. Specifically, we approached the\ncausal discovery task to learn a causal graph by combining observational data\nfrom an open-source dataset with prior knowledge. The resulting causal graph\nshows that only a few variables effectively influence the analysed feedback\nsignals. This contrasts with the recent trend in the machine learning community\nto include more and more variables in massive models, such as neural networks.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"213 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Discovery in Recommender Systems: Example and Discussion\",\"authors\":\"Emanuele Cavenaghi, Fabio Stella, Markus Zanker\",\"doi\":\"arxiv-2409.10271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causality is receiving increasing attention by the artificial intelligence\\nand machine learning communities. This paper gives an example of modelling a\\nrecommender system problem using causal graphs. Specifically, we approached the\\ncausal discovery task to learn a causal graph by combining observational data\\nfrom an open-source dataset with prior knowledge. The resulting causal graph\\nshows that only a few variables effectively influence the analysed feedback\\nsignals. This contrasts with the recent trend in the machine learning community\\nto include more and more variables in massive models, such as neural networks.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因果关系越来越受到人工智能和机器学习界的关注。本文举例说明了如何利用因果图来模拟推荐系统问题。具体来说,我们通过将来自开源数据集的观测数据与先验知识相结合来完成因果发现任务,从而学习因果图。由此产生的因果图显示,只有少数几个变量能有效影响所分析的反馈信号。这与机器学习界最近在神经网络等大规模模型中加入越来越多变量的趋势形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Discovery in Recommender Systems: Example and Discussion
Causality is receiving increasing attention by the artificial intelligence and machine learning communities. This paper gives an example of modelling a recommender system problem using causal graphs. Specifically, we approached the causal discovery task to learn a causal graph by combining observational data from an open-source dataset with prior knowledge. The resulting causal graph shows that only a few variables effectively influence the analysed feedback signals. This contrasts with the recent trend in the machine learning community to include more and more variables in massive models, such as neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信