在基于扩散模型的推荐中纳入无分类指导

Noah Buchanan, Susan Gauch, Quan Mai
{"title":"在基于扩散模型的推荐中纳入无分类指导","authors":"Noah Buchanan, Susan Gauch, Quan Mai","doi":"arxiv-2409.10494","DOIUrl":null,"url":null,"abstract":"This paper presents a diffusion-based recommender system that incorporates\nclassifier-free guidance. Most current recommender systems provide\nrecommendations using conventional methods such as collaborative or\ncontent-based filtering. Diffusion is a new approach to generative AI that\nimproves on previous generative AI approaches such as Variational Autoencoders\n(VAEs) and Generative Adversarial Networks (GANs). We incorporate diffusion in\na recommender system that mirrors the sequence users take when browsing and\nrating items. Although a few current recommender systems incorporate diffusion,\nthey do not incorporate classifier-free guidance, a new innovation in diffusion\nmodels as a whole. In this paper, we present a diffusion recommender system\nthat augments the underlying recommender system model for improved performance\nand also incorporates classifier-free guidance. Our findings show improvements\nover state-of-the-art recommender systems for most metrics for several\nrecommendation tasks on a variety of datasets. In particular, our approach\ndemonstrates the potential to provide better recommendations when data is\nsparse.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation\",\"authors\":\"Noah Buchanan, Susan Gauch, Quan Mai\",\"doi\":\"arxiv-2409.10494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a diffusion-based recommender system that incorporates\\nclassifier-free guidance. Most current recommender systems provide\\nrecommendations using conventional methods such as collaborative or\\ncontent-based filtering. Diffusion is a new approach to generative AI that\\nimproves on previous generative AI approaches such as Variational Autoencoders\\n(VAEs) and Generative Adversarial Networks (GANs). We incorporate diffusion in\\na recommender system that mirrors the sequence users take when browsing and\\nrating items. Although a few current recommender systems incorporate diffusion,\\nthey do not incorporate classifier-free guidance, a new innovation in diffusion\\nmodels as a whole. In this paper, we present a diffusion recommender system\\nthat augments the underlying recommender system model for improved performance\\nand also incorporates classifier-free guidance. Our findings show improvements\\nover state-of-the-art recommender systems for most metrics for several\\nrecommendation tasks on a variety of datasets. In particular, our approach\\ndemonstrates the potential to provide better recommendations when data is\\nsparse.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于扩散的推荐系统,该系统包含无分类器引导功能。目前的大多数推荐系统都采用传统方法提供推荐,如协同过滤或基于内容的过滤。扩散是生成式人工智能的一种新方法,它改进了以往的生成式人工智能方法,如变异自动编码器(VAE)和生成对抗网络(GAN)。我们将扩散纳入推荐系统,该系统反映了用户浏览和评价项目时的顺序。尽管目前有一些推荐系统采用了扩散模型,但它们并没有采用无分类器指导,而扩散模型在整体上是一种新的创新。在本文中,我们介绍了一种扩散式推荐系统,该系统增强了底层推荐系统模型,从而提高了性能,同时还加入了无分类器引导功能。我们的研究结果表明,在各种数据集上的几项推荐任务中,我们的大多数指标都优于最先进的推荐系统。特别是,我们的方法证明了在数据稀少的情况下提供更好推荐的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation
This paper presents a diffusion-based recommender system that incorporates classifier-free guidance. Most current recommender systems provide recommendations using conventional methods such as collaborative or content-based filtering. Diffusion is a new approach to generative AI that improves on previous generative AI approaches such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items. Although a few current recommender systems incorporate diffusion, they do not incorporate classifier-free guidance, a new innovation in diffusion models as a whole. In this paper, we present a diffusion recommender system that augments the underlying recommender system model for improved performance and also incorporates classifier-free guidance. Our findings show improvements over state-of-the-art recommender systems for most metrics for several recommendation tasks on a variety of datasets. In particular, our approach demonstrates the potential to provide better recommendations when data is sparse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信